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Abstract

Estimating habitat and spatial associations for wildlife is common across

ecological studies and it is well known that individual traits can drive

population dynamics and vice versa. Thus, it is commonly assumed that

individual- and population-level data should represent the same underlying

processes, but few studies have directly compared contemporaneous data

representing these different perspectives. We evaluated the circumstances

under which data collected from Lagrangian (individual-level) and Eulerian

(population-level) perspectives could yield comparable inference to understand

how scalable information is from the individual to the population. We used

Global Positioning System (GPS) collar (Lagrangian) and camera trap (Eulerian)

data for seven species collected simultaneously in eastern Washington

(2018–2020) to compare inferences made from different survey perspectives. We

fit the respective data streams to resource selection functions (RSFs) and occu-

pancy models and compared estimated habitat- and space-use patterns for each

species. Although previous studies have considered whether individual- and

population-level data generated comparable information, ours is the first to

make this comparison for multiple species simultaneously and to specifically

ask whether inferences from the two perspectives differed depending on the

focal species. We found general agreement between the predicted spatial distri-

butions for most paired analyses, although specific habitat relationships differed.

We hypothesize the discrepancies arose due to differences in statistical power

associated with camera and GPS-collar sampling, as well as spatial mismatches

in the data. Our research suggests data collected from individual-based sampling

methods can capture coarse population-wide patterns for a diversity of species,

but results differ when interpreting specific wildlife-habitat relationships.
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INTRODUCTION

Understanding the habitat and spatial associations of spe-
cies is fundamental to the study of ecology (Mayor
et al., 2009; Strickland & McDonald, 2006) and increas-
ingly important as human land use and climate change
push more species to the limits of their ranges (Lenoir &
Svenning, 2015; Williams & Newbold, 2021). Within
management and conservation contexts, these relation-
ships are evaluated at the population level to make pre-
dictions about how species will respond to environmental
perturbations and to assess the efficacy of management
actions (Martin, 1998; Merrick & Koprowski, 2017). How-
ever, the data collected to inform these population level
parameters may vary from individual- to population-
level, necessitating an evaluation of how consistently
different survey types scale when making inference. In
addition, researchers and decision makers must evaluate
trade-offs between costs, technology, multiple objectives,
feasibility, animal welfare, and human safety when con-
sidering how to design and implement wildlife surveys.

Wildlife surveys are typically either individual-based,
following a Lagrangian survey perspective where sampling
equipment moves with the individual (e.g., Global
Positioning System [GPS] collars), or location-based,
following a Eulerian survey perspective in which observa-
tions are taken at predetermined locations where animals
may occur over time, thus collecting population-level
data (e.g., transect surveys; Aarts et al., 2008; Baratchi
et al., 2013; Phillips et al., 2019; Tremblay et al., 2009).
Individual-level traits and decisions scale up to
population-level patterns (Mueller & Fagan, 2008), so data
collected under either survey perspective can be used to
answer similar ecological questions despite sampling dif-
ferent hierarchical levels of a wildlife population or com-
munity (Phillips et al., 2019). However, few studies have
explicitly considered whether Lagrangian and Eulerian
surveys capture the same population-level patterns equally
well, partly because studies rarely collect concurrent and
spatially overlapping data from both survey perspectives
(Del Bosco, 2021; Phillips et al., 2019). Previous studies
that did collect contemporaneous datasets often used one
data source to validate the other. For example, Popescu
et al. (2014) evaluated how well the detection probability
of Pacific fisher (Pekania pennanti), estimated from cam-
era trap data, was predicted by the number of fisher telem-
etry locations near camera traps within telemetry-based
utilization distributions. Gould et al. (2019) took this
approach a step further and used telemetry locations from
collared American black bears (Ursus americanus) as a
spatially independent data source to assess the fit and per-
formance of occupancy models constructed from photo-
capture data of black bears. Both studies found the

different data sources provided complimentary informa-
tion, but they did not evaluate whether information from
each perspective scaled up to make similar population-
level inferences. This is an important missing step because
each sampling method has inherent biases associated with
their respective survey perspectives that can propagate
through analyses to influence the final estimates, infer-
ences, and conservation decisions. Phillips et al. (2019)
addressed this knowledge gap by comparing the estimated
utilization distributions of common murres (Uria aalge)
derived from satellite-tagged individuals (i.e., Lagrangian
perspective) and ship-based and aerial transect surveys
(i.e., Eulerian perspective). They found close agreement
between survey perspectives and sampling methods early
in the breeding season but observed divergent space-use
patterns estimated from the different survey perspectives
as the breeding season progressed (Phillips et al., 2019).
Their work demonstrated that although data from differ-
ent survey perspectives can yield similar inferences, excep-
tions exist, underscoring the need for further research
evaluating the prevalence of these discrepancies.

Animal-borne GPS collars and camera traps are
two common tools for wildlife monitoring (Latham
et al., 2015; O’Connell et al., 2011) that fall under the
respective Lagrangian and Eulerian perspectives (Baratchi
et al., 2013; Del Bosco, 2021; Phillips et al., 2019). Both
technologies generate large amounts of data that can be
used to assess habitat associations and species distribu-
tions (Aarts et al., 2008; McClintock et al., 2020; O’Connell
et al., 2011). Animal-borne technologies, such as GPS col-
lars, can generate high-resolution location data for individ-
ual animals (Hebblewhite & Haydon, 2010), whereas
camera traps can collect detections of many individuals
within a population non-invasively and are considered
ideal for monitoring multiple species simultaneously
(Burton et al., 2015; Iannarilli et al., 2021; O’Connell
et al., 2011). Yet, each technology presents its own set of
challenges (Burton et al., 2015; Hebblewhite &
Haydon, 2010). Lagrangian-based studies using GPS col-
lars are limited by the number of animals they can moni-
tor because they are expensive and labor intensive to
deploy (Shimada et al., 2021), which can result in a rela-
tively small, non-random sample of the population
(Fieberg et al., 2010; Hebblewhite & Haydon, 2010).
Sequential animal locations are often autocorrelated
(Boyce et al., 2010; Fieberg et al., 2010), which can also
introduce bias when scaling up from the individual to the
population (Aarts et al., 2008; Phillips et al., 2019;
Watanuki et al., 2016). Conversely, camera trap and other
Eulerian-based studies monitor finite space and locations,
thus limiting the spatial extent and resolution of inference
while potentially failing to account for important
individual-level variation that influences broader patterns
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(Phillips et al., 2019; Wakefield et al., 2011; Watanuki
et al., 2016). Camera placement greatly influences the hab-
itats, species, and ecological phenomena that are sampled,
which may inadvertently bias photo-capture data (Burton
et al., 2015; Hofmeester et al., 2019; Iannarilli et al., 2021;
Tanwar & Sadhu, 2021). In particular, many large carni-
vores prefer to travel on roads, whereas prey species often
avoid linear features (Dickie et al., 2020; Hofmeester
et al., 2021), which can greatly influence their detectability
and, thus, our inferences when cameras are placed non-
randomly on these features (Iannarilli et al., 2021). Conse-
quently, survey-specific biases and limitations that arise
may make information gained from one method incompa-
rable to that of the other (Popescu et al., 2014).

It is increasingly important that we evaluate how sur-
vey perspective and study design influence population-
level inferences, particularly as we continue to adopt new
technologies, integrate data across methods, and try to
relate trends and relationships observed in one data set to
that of another (Phillips et al., 2019; Priddel et al., 2014).
For example, Phillips et al. (2019) hypothesized that their
common murre population comprised both resident and
non-resident individuals and that the various sampling
methods captured breeding, foraging, and transient behav-
iors differently, resulting in the divergent spatial distribu-
tions estimated from the individual- and location-based
perspectives. If this is the case, then we might expect to
see divergent patterns of space-use in other species where
individual-based and population-level approaches sample
different portions of the same population or capture differ-
ent movement behaviors. For instance, collar-based stud-
ies focused on cervid species often only collar adult
females (Forrester & Wittmer, 2013; Gaillard et al., 1998),
whereas many carnivore-focused studies collar a more
demographically random sample of the population.
Camera traps typically capture a more random sample of
the entire population regardless of the species, but when
deployed to increase detections of rare or elusive species
(e.g., carnivores), they may disproportionately sample cer-
tain movement or foraging behaviors depending on the
species (Cusack et al., 2015; Kolowski & Forrester, 2017).
As a result, population-level inferences may be more or
less consistent depending on the movement and foraging
strategies of the species of interest (e.g., predator or prey)
and the demographics sampled by each perspective.
Comparing habitat- and space-use patterns estimated from
Lagrangian and Eulerian sampling approaches for a diver-
sity of species should provide further insight about the cir-
cumstances under which inferences about wildlife
populations may differ with survey perspective.

We used camera trap and telemetry data from seven
species (bobcat [Lynx rufus], cougar [Puma concolor],
coyote [Canis latrans], elk [Cervus canadensis], gray wolf

[C. lupus], mule deer [Odocoileus hemionus], and white-
tailed deer [O. virginianus]) collected simultaneously in
eastern Washington, USA, and evaluated how survey per-
spective influenced inferences about wildlife-habitat asso-
ciations and space use. We deployed camera traps under
a multiple-species monitoring framework where camera
sites were chosen randomly across the landscape but
placed non-randomly along linear features to increase
the probability of detecting more elusive species in
the wildlife community (Mann et al., 2015; Meek
et al., 2014). Accordingly, we hypothesized that infer-
ences from our Eulerian and Lagrangian perspectives
would be less consistent for species whose detections
were low or for species that move along linear features
and thus their detections could be strongly influenced by
camera placement on roads (e.g., wolves). GPS collars
were deployed on both sexes for all carnivore species but
only on adult females of the cervid species, so we also
hypothesized that inferences would be less consistent
between sampling approaches for species where the GPS-
collaring efforts targeted only one demographic group.
Because camera traps and GPS collars collect different
types of data (i.e., detection/non-detection versus
presence-only; Aarts et al., 2008), we applied different,
but commonly used and appropriate methods to the
photo-capture and telemetry data to estimate habitat and
spatial relationships in wildlife science (i.e., occupancy
models and resource selection functions [RSF], respec-
tively). If the two survey perspectives capture similar eco-
logical relationships and patterns despite sampling
different aspects of a wildlife population, we expected the
results from these two analyses to produce similar infer-
ences about habitat- and space-use patterns. We therefore
compared the estimated habitat associations and
predicted space-use derived from the two perspectives for
each species, expecting to see different habitat predictors
and probability of use for a given species when the two
perspectives were least consistent.

METHODS

Study areas

Photo-capture and telemetry data were collected across
two study areas in eastern Washington, USA, from
June 2018 to March 2020 (Figure 1). The Northeast study
area (4535 km2; centered at �117.7193� W, 48.28302� N)
was defined by two Washington Department of Fish and
Wildlife Game Management Units (GMU) and was bor-
dered by the Pend Oreille River and Columbia River.
White-tailed deer and elk occurred in relatively high den-
sities in this study area along with smaller sympatric
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populations of mule deer and moose (Alces alces).
Common carnivore species included cougars, coyotes, bob-
cats, and black bears, as well as four documented gray
wolf packs (Washington Department of Fish and Wildlife
et al., 2019). This region was characterized by mixed coni-
fer forests of varying seral stages following climatic and
topographic gradients of the southern Selkirk and
Huckleberry Mountains (elevation ranging 378–2079 m;
Williams et al., 1995). Mean annual temperatures in
Chewelah, WA ranged �2.4�C in January to 19.2�C in
July with a mean annual precipitation of 52.3 cm
(National Oceanic and Atmospheric Administration, 2021;
Western Regional Climate Center, 2016). Forests were
dominated by Douglas fir (Pseudotsuga menziesii), grand
fir (Abies grandis), ponderosa pine (Pinus ponderosa),
western hemlock (Tsuga heterophylla), and western red
cedar (Thuja plicata; Williams et al., 1995). The Okanogan
study area (5300 km2; centered at �120.1096� W,
48.42966� N) was defined by six Washington Department
of Fish and Wildlife GMUs and was bordered by the
Okanogan River and North Cascade Range, overlaying a
topographically rugged and mountainous region charac-
terized by deep valleys and steep slopes (elevation ranging
225–2790 m; Williams & Lillybridge, 1983). A large, par-
tially migratory mule deer herd made up the predominant
ungulate species in this region, although white-tailed deer,
moose, and elk also occurred in the study area. The carni-
vore community was similar to that of the Northeast but
also included a small population of Canada lynx (Lynx
canadensis) and two documented wolf packs during the

study (Washington Department of Fish and Wildlife
et al., 2019). Mean annual temperatures in Winthrop, WA
ranged �3.2�C in January to 20.3�C in July with a mean
annual precipitation of 36.1 cm (National Oceanic and
Atmospheric Administration, 2021). Mixed conifer forests
were dominated by stands of Douglas fir, Engelmann
spruce (Picea engelmannii), lodgepole pine (Pinus
contorta), ponderosa pine, and subalpine fir (Abies
lasiocarpa; Williams & Lillybridge, 1983), and open
regions were dominated by big sagebrush (Artemisia
tridentata) and antelope bitterbrush (Purshia tridentata).

Camera data

We used motion-sensing trail cameras (Model HyperFire2
Pro; Reconyx, Holmen, WI, USA) to monitor 120 randomly
selected sites in the Northeast (n = 55) and Okanogan
(n = 65) study areas each year. We deployed and
maintained cameras from June 2018 to June 2019 and
redeployed them to new random locations from June 2019
through June 2020 to monitor a total of 240 unique sites,
each for 1 year. We used a stratified random sampling
design to select camera trap locations (O’Connell &
Bailey, 2011) by stratifying each study area into four eleva-
tion bands. We excluded locations above �2100 m eleva-
tion in the Okanogan to avoid sampling alpine habitat
that was both logistically difficult to access and not fre-
quently used by the animal community of interest. We
overlaid a 1 km2 grid across each study area and randomly

F I GURE 1 Locations of 240 camera stations that sampled the Okanogan and Northeast study areas in eastern Washington, USA from

2018 to 2020, plotted against the elevational gradient where darker shades represent higher elevations.
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selected grid cells within each elevation strata by area-
weighting each stratum and selecting the number of cells
proportional to the amount of land area within each
stratum per study area. We deployed a single, un-baited,
camera within 250 m of the centroid of each selected cell.
We placed cameras on secondary (unpaved) roads,
human-use trails, or game trails to target linear features
that would funnel animal movement and increase the like-
lihood of detecting rarer species that occur at low densities
(e.g., large carnivores; Cusack et al., 2015). The cameras
were motion- and temperature- triggered and programmed
to record five images per trigger. They operated day and
night for an entire year and recorded the date and time
when each photo was taken (camera programming
reported in Supplemental Materials).

We processed the photo-capture data using the
Microsoft AI for Earth machine learning algorithm
(“MegaDetector”; Beery et al., 2019) and program
Timelapse2 (Greenberg, 2019). The MegaDetector indi-
cated whether an animal, human, or vehicle was present
in each image. Two technicians independently reviewed
images based on the MegaDetector predictions and
recorded the species for all animals detected in each
image using Timelapse2. A third technician compared
the independent data sets to ensure images were labeled
correctly and generated the final image set used for
analysis.

Telemetry data

We monitored a total of 469 individuals of seven species
between January 2017 and March 2020 using Global
Positioning System (GPS) collars (Figure 2). We captured
and collared adult male and female carnivores in both
study areas. Bobcats were captured and collared (n = 37;
Model Gen4 GPS-Iridium, Telonics, Mesa, Arizona, USA)
using cage traps baited with grouse wings, beaver or
road-killed deer (Koehler & Hornocker, 1991). Cougars
were captured and collared (n = 60; Model Vertex Lite,
Vectronic Aerospace and GPS-enabled accelerometer col-
lars, Advanced Telemetry Systems, Inc., Isanti Minne-
sota, USA) using trained dogs or large, steel cage traps
baited with cougar-killed or road-killed deer and elk
(Kertson et al., 2011). Coyotes were captured and collared
(n = 23; Model Gen4 GPS-Iridium, Telonics) using
rubber-padded foothold traps (Victor no. 3 soft-catch off-
set 4 � 4 foothold traps; Linhart, 1983). Similarly, wolves
were captured and collared (n = 14; Models Vertex Lite
and Vertex Plus, Vectronic Aerospace) using rubber-
padded foothold traps (no. 7 EZ Grip foothold traps,
Livestock Protection Company, Alpine, Texas, USA) and
aerial darting (Frame & Meier, 2007; Jessup, 1982).

We captured and collared only adult female cervids in
one study area per species owing to their higher densities
and broader distributions within their respective study
areas. Specifically, adult female elk were captured and
collared (n = 63; Model Survey, Vectronic Aerospace,
Berlin, Germany) by aerial darting (Jessup, 1982) in the
Northeast study area. Adult female mule deer were cap-
tured and collared (n = 138; Model Survey, Vectronic
Aerospace) by drive netting and aerial net-gunning (Kock
et al., 1987) in the Okanogan study area. And adult
female white-tailed deer were captured and collared
(n = 131; Models Survey and Vertex Plus, Vectronic
Aerospace) using clover traps, suspended net-guns
(Wildlife Capture Services, Flagstaff, Arizona, USA), and
ground darting (Clover, 1954; Haulton et al., 2001;
Hawkins et al., 1968; VerCauteren et al., 1997) in the
Northeast study area. All collars were programmed to
attempt a GPS fix every 4 h for 180 s. All animal captures
and handling were performed in accordance with Univer-
sity of Washington Institutional Animal Care and Use
Committee guidelines under IACUC Protocols no. 4226-01,
no. 4381-01, Washington Department of Fish and Wildlife
scientific collection permits no. 20-290, no. 17-162 and
renewals, and adhered to standards promulgated by the
American Society of Mammologists (Sikes, 2016).

Habitat predictors

We included seven habitat-related covariates in our
models that are commonly used in studies to evaluate
wildlife-habitat associations and represented variation in
terrain, vegetation, and anthropogenic impacts across our
study areas. We extracted elevation and slope data for
each camera site and telemetry location from the Shuttle
Radar Topography Mission (SRTM) 30 m resolution digi-
tal elevation model (DEM; Farr et al., 2007). We used
annual land cover data from the Cascadia Biodiversity
Watch TerrAdapt:Cascadia tool (30 m resolution; https://
cascadiapartnerforum.org/terradapt) to classify the domi-
nant vegetation around each camera site and telemetry
location. We reclassified the land cover data into six land
cover types (forest, xeric shrub, xeric grass, mesic grass,
developed, and water) and used a moving window analy-
sis in Program R version 4.0.2 (R Core Team, 2020) to cal-
culate the percent of each land cover classification within
a 250 m radius of each observation. We included percent
forest, percent xeric grass, and percent xeric shrub in our
analyses because these made up the bulk of the land
cover types in our study areas. We calculated the density
of roads per 1 km pixel (road length/1 km2) in Program R
(R Core Team, 2020) based on the Cascadia Biodiversity
Watch TerrAdapt:Cascadia tool roads layer, which
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included highways, residential roads, and service roads
(primarily logging roads). Finally, we included the study
area in which each camera was deployed.

We also incorporated site-specific information col-
lected at each camera trap in the occupancy models only.
Specifically, we recorded the type of linear feature each
camera trap monitored, hereafter referred to as trail type

(game trail, decommissioned road, or open road), the
height of the camera from the ground, and the distance
of the camera to the closest point of the linear feature it
monitored, measured at the center of the camera’s
viewshed. We also included an interaction between cam-
era height and distance to account for the angle of the
camera because the angle varied greatly depending on

F I GURE 2 Maps of approximate capture locations (black points) for seven species in two study areas in eastern Washington,

2018–2020 and the outline of species- and study area-specific home ranges (blue lines) of all individuals used for resource selection function

analyses. We used individual home ranges (100% minimum convex polygons) to define the area “available” for each collared individual, but

these were too numerous to show. Instead, the outermost outline of all home ranges combined are shown here. (a) Mule deer were only

captured and collared in the Okanogan study area. (b) Elk and (c) white-tailed deer were only captured and collared in the Northeast study

area. (d) Bobcats, (e) cougars, (f) coyotes, and (g) wolves were captured and collared in both study areas. Approximate capture locations that

fall outside the blue polygon correspond to animals that were captured and dispersed to new areas (within the blue polygon) prior to the

start of the focal period of this study. Approximate capture locations and home range polygons plotted against the elevational gradient in

each study area where darker shades represent higher elevations.
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the terrain, directionality of the linear feature, and the
location of the object the camera was affixed to relative to
the linear feature. We expected these variables associated
with camera placement would influence the probability
of detecting different species on camera (Hofmeester
et al., 2019; Iannarilli et al., 2021). In addition, given that
ambient temperature can affect animal activity patterns
(Hofmann et al., 2016; Van Beest et al., 2012), and affect
a camera’s ability to differentiate background surface
temperatures from that of an animal (Jacobs &
Ausband, 2018), we used the North American Regional
Reanalysis (NARR; 32 km resolution) weather data to
characterize the weekly mean temperature at each cam-
era site for every day the camera was deployed (Mesinger
et al., 2006).

We centered and scaled all continuous variables to
allow for direct comparison among covariate effects. We
checked for collinearity among continuous variables and
excluded those that were highly correlated (r ≥ j0.6j) in
species- and season-specific models (discussed below).

Occupancy models

We used the photo-capture data from each camera trap
to create detection histories for each species for two
13-week time periods, summer (1 July–29 September)
and winter (1 December–1 March). We considered two
different seasons because the life-histories of these
species and environmental pressures they experience
vary over the annual cycle, thus their behaviors and
associated habitat use may differ from summer to
winter. Each seasonal and species-specific detection
history consisted of 13 seven-day sampling occasions
where each species was either detected (1) or not
detected (0) at a given camera trap site during each sam-
pling occasion. We considered a detection event to be
independent when the first detection of a given species
followed a ≥30-min interval between photographs of the
same species (Burton et al., 2015; O’Brien et al., 2003;
Sollmann, 2018). We combined data from both years
of sampling into a single detection history for each
season and species (summer [2018 and 2019] and
winter [2018–2019 and 2019–2020]).

We fit single-season, single-species occupancy models
(MacKenzie et al., 2002) with the unmarked package
(Fiske & Chandler, 2011) in Program R version 4.0.2
(R Core Team, 2020) to estimate the probability of use at
each camera site. Occupancy models use detection/
non-detection data to estimate the probability a species
will occur in a given area while accounting for imperfect
detection during repeat surveys (MacKenzie et al., 2002).
Although sometimes referred to as species distribution

models (e.g., Koshkina et al., 2017; Lahoz-Monfort
et al., 2014), occupancy models are more commonly used
to estimate the probability of occurrence within a pre-
defined region while assessing environmental factors
associated with the occurrence patterns, making them an
ideal statistical framework when estimating habitat- and
space-use patterns with camera trap data (O’Connell &
Bailey, 2011). Because camera traps sample a small area
relative to the average home range of any of our focal
species occurring across a continuous habitat, we
interpreted our results as asymptotic occupancy, or the
probability that a species would use a given camera site
at some point during our study period (Efford &
Dawson, 2012).

We included the same seven covariates on the proba-
bility of occupancy (elevation, slope, percent forest, per-
cent grass, percent shrub, road density, and study area)
and same five covariates on the probability of detection
(trail type, camera height, camera distance to trail,
height � distance interaction, and weekly mean tempera-
ture) for each season- and species-specific occupancy
model. We chose to fit an identical model to all detection
histories to allow for more direct comparison across spe-
cies and sampling methods (camera traps and GPS col-
lars). However, we excluded percent grass and/or percent
shrub from various species- and season-specific occu-
pancy models when they were highly correlated with
other variables or due to poor model convergence. Given
that sample size can influence power to detect significant
relationships in the data, and the GPS collars generated
an order of magnitude more observations than the cam-
era traps, using a common set of habitat predictors
allowed us to reduce the chance that data volume drove
differences between significant relationships identified by
the two different types of models. We considered any
coefficients in the occupancy models with a p-value ≤0.1
as “significant” for the purposes of this analysis. We con-
sidered a species difficult to detect if the mean probability
of detecting that species during a one-week sampling
occasion was ≤0.3 and rare in our study areas during a
given season if the mean probability it used a camera site
was ≤0.3 (Specht et al., 2017).

RSFs

Telemetry data provide information on “used” locations
only, so unlike the photo-capture data, we could not
identify locations that were “unused” by an animal and
therefore could not estimate the probability of use from
these data. A RSF, however, allows us to compare “used”
resource units to a random sample of resource units that
were “available” to the animal within a specified area,
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thus allowing us to estimate habitat selection (Johnson
et al., 2006; Manly et al., 2002). RSFs are proportional to
the probability of selecting a resource unit and estimate
the relative probability that a resource unit will be
selected when it is encountered (Boyce et al., 2002; Lele
et al., 2013).

We defined used locations as any telemetry location
generated by a GPS-collared animal during the same
seasonal time periods included in the occupancy
models (summer [2018 and 2019] and winter [2018–2019
and 2019–2020]). We sampled available resource units
based on second-order habitat selection (i.e., what deter-
mines the placement of an individual’s home range;
Johnson, 1980) because we assumed this level of selec-
tion was most comparable to that of our occupancy
models, which estimate species habitat use across the
study areas, not within individual home ranges (Aarts
et al., 2008). We defined the spatial extent of what was
available to each collared individual by calculating a
100% minimum convex polygon (MCP) using the telem-
etry locations of the collared individual and buffering
that MCP by its diameter with the adehabitatHR
package (Calenge, 2006) in Program R (R Core Team,
2020; Figure 2). This allowed us to center the geographic
area available to each animal around its current home
range and avoid the often-unrealistic assumption that
the entire study area is equally available to every col-
lared individual. We then randomly sampled locations
within each collared animal’s respective buffered MCP
at a 1:20 ratio of used to available points (Fieberg
et al., 2021). We note that this ratio can be study specific
and researchers should compare the ratio of used to
available points to assess how sample size influences
coefficient estimates (Fieberg et al., 2021). We assigned
a weight of 5000 to the available locations and a weight
of 1 to the used locations (Fieberg et al., 2021). We
extracted covariate values at each used (1) and available
(0) location and populated RSFs with these data.

We fit species-specific used and available data for
each season (summer and winter) to mixed-effects
logistic regression models using the lme4 package
(Bates et al., 2015) in Program R (R Core Team, 2020)
to estimate the coefficients in the RSF for each species
and season (Fieberg et al., 2021). We included all
habitat-related covariates (elevation, slope, percent
forest, percent grass, percent shrub, and road density)
as fixed effects in our models. We excluded percent
grass and/or percent shrub from species- and season-
specific RSFs when these variables were excluded from
the corresponding occupancy model for easier compar-
ison between models. We excluded study area from all
RSFs because GPS-collared animals could not select
between study areas based on what was available to

them. We included a random effect for unique animal
ID to account for individual variation and pseudo-
replication (Gillies et al., 2006). We removed the
random effect from the summer elk RSF due to issues
of singularity. We considered any coefficients with a
p-value ≤0.05 for interpretation owing to the larger
sample sizes in the RSFs compared to the occupancy
models.

Comparing habitat associations and
space-use

We compared individual model coefficients, as well as
broadscale predictions of space use, to determine if the
different data types yielded similar inferences for a given
species and season when estimated using two common
habitat analyses. We recognized that the occupancy and
RSF coefficient values were not directly comparable due
to their methodological differences (Lele et al., 2013), but
we assumed both analyses would capture similar habitat
relationships and spatial patterns if the data from camera
traps and GPS collars scaled to similar patterns at the
population level. To make these comparisons, we first
inspected the estimated model coefficients from each pair
of occupancy and RSF analyses, specifically evaluating
the magnitude of the covariate effects in each model and
whether the directionality (+/�) of those effects agreed.
We then predicted the species- and season-specific
probability of use and relative probability of selection
across each study area from the respective occupancy
models and RSFs. We plotted predictions within each
study area and visually compared the predicted
space-use patterns for each species and season. Finally,
as a more quantitative comparison, we rescaled the
predicted values of relative probability of selection to
range 0–1 and calculated the mean correlation between
predicted pixel values for each pair of maps using
Pearson’s correlation coefficient.

RESULTS

Camera data

A total of 233 and 218 camera traps were active over the
course of our summer and winter sampling seasons,
yielding 18,377 and 19,262 trapping nights, respectively.
We collected on average 954 (SE = 462) independent
detections per focal species across active cameras during
the summer sampling seasons and on average
524 (SE = 263) independent detections per focal species
in the winter sampling seasons (Table 1).
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Telemetry data

Of the 469 animals fitted with GPS collars during our
study, we included telemetry relocation data from 255 col-
lared animals in the summer sampling seasons and
303 animals in the winter sampling seasons, respectively
(Table 1). These collars generated an average of 26,535
(SE = 10,079) used locations per focal species across the
two summer sampling seasons and an average of 16,726
(SE = 10,631) used locations across the two winter sam-
pling seasons, resulting in over 65,206 tracking days
across all species and seasons (Table 1).

Occupancy models

We fit 14 occupancy models, that is, one per species and
season, to the photo-capture data. The probability of site
use and detection varied by species and season but in
general carnivores were less likely than ungulates to use
camera sites or be detected by a camera trap within a
one-week sampling occasion (Table 2, Appendix S1:
Table S1). Bobcats, elk, and wolves were the rarest spe-
cies in our study areas (mean occurrence probability
≤0.3). These species also had the lowest detection proba-
bilities, along with cougars and coyotes (mean detection

probability ≤0.3). Mule deer and white-tailed deer had
the highest probability of site use (0.63–0.92) and detec-
tion (0.35–0.67).

Habitat predictors that significantly (p-value ≤0.1)
affected the probability of occurrence varied by species
and season (Table 2). Elevation had a negative effect on
the probability coyotes and white-tailed deer would use
a camera site in either season. Conversely, elevation had
a positive effect on wolf and cougar site use in the
summer but a negative effect on cougar site use in the
winter, suggesting seasonal variation in their habitat use.
Slope had a negative effect on the probability of coyote
site use in summer (Table 2). Cougars in either season,
and bobcats, mule deer, and white-tailed deer in sum-
mer, were more likely to use a camera site as the per-
centage of forested habitat increased, whereas mule deer
site use increased in winter as the percent of grassland
and shrubland habitat increased. We also found there
was a higher probability that a camera site was used by
cougars and wolves in the Northeast compared to the
Okanogan study area, consistent with known density
and distribution of wolf packs between the two study
areas (i.e., four documented packs in the Northeast and
two documented packs in the Okanogan; Washington
Department of Fish and Wildlife et al., 2019). Coyotes
were more likely to use camera sites in the Okanogan

TAB L E 1 Summary of species detected by semi-randomly placed camera traps and Global Positioning System (GPS) collared animals in

the Northeast and Okanogan study areas, eastern Washington, USA 2018–2020.

Species Season
Independent
detections

Proportion of
camerasa

Collared
animalsb

Used
locations

Tracking
days

Bobcat Summer 198 0.30 10 3043 815

Bobcat Winter 74 0.17 12 2673 821

Cougar Summer 159 0.35 34 21,721 3968

Cougar Winter 72 0.16 34 16,597 3039

Coyote Summer 1140 0.62 16 6962 1367

Coyote Winter 777 0.53 18 9376 1847

Elk Summer 151 0.38 46 44,384 7714

Elk Winter 33 0.13 50 45,059 7546

Mule deer Summer 1582 0.86 82 76,811 13,192

Mule deer Winter 794 0.58 108 80,373 13,296

White-tailed deer Summer 3385 0.93 58 27,744 4947

White-tailed deer Winter 1896 0.34 74 29,569 5147

Wolf Summer 63 0.12 9 5078 909

Wolf Winter 27 0.08 7 3437 598

Note: Camera trap detections were considered independent when a ≥30-min interval elapsed between photographs of the same species at a given
camera site.
aProportions were calculated based on the number of active cameras in that season. Only active cameras within the Northeast study area were used to calculate
proportions for elk and white-tailed deer; only active cameras in the Okanogan study area were used for mule deer proportions.
bElk and white-tailed deer were only collared in the Northeast study area; mule deer were only collared in the Okanogan study area.
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TAB L E 2 Estimated coefficients and SE for the effect of habitat predictors on the probability a camera site was used by a species of

interest (estimated using occupancy models [Occ]) and the relative probability of second-order resource selection for Global Positioning

System (GPS)-collared animals (estimated with resource selection functions [RSF]) in eastern Washington, summer and winter 2018–2020.

Type of
analysis Species Season

Intercept
(SE)

Study
area
(SE)a

Elevation
(SE)

Percent
forest
(SE)

Percent
grass
(SE)b

Percent
shrub
(SE)b

Road
density
(SE)

Slope
(SE)

Occ Bobcat Summer 0.11
(0.45)

�0.46
(0.6)

0.49
(0.37)

0.81
(0.39)

�0.19
(0.44)

�0.01
(0.42)

0.06
(0.25)

0.4
(0.27)

RSF Bobcat Summer �12.17
(0.09)

NA 0.06
(0.03)

0.62
(0.03)

�0.61
(0.11)

�0.9
(0.14)

�0.13
(0.02)

0.18
(0.02)

Occ Bobcat Winter �1.23
(0.42)

�0.07
(0.61)

�0.28
(0.31)

0.61
(0.38)

0.2
(0.31)

NA 0.32
(0.23)

0.11
(0.23)

RSF Bobcat Winter �11.71
(0.11)

NA �0.89
(0.03)

0.5
(0.03)

�0.04
(0.03)

NA �0.11
(0.02)

0.16
(0.02)

Occ Cougar Summer 0.87
(0.54)

�1.18
(0.7)

0.8
(0.4)

0.73
(0.44)

0.26
(0.35)

�0.08
(0.5)

�0.29
(0.31)

�0.23
(0.26)

RSF Cougar Summer �11.58
(0.03)

NA 0.11
(0.01)

0.2
(0.01)

�0.41
(0.02)

�0.02
(0.01)

�0.08
(0.01)

�0.13
(0.01)

Occ Cougar Winter �1.42
(0.61)

0.91
(0.86)

�1.76
(0.7)

1.41
(0.55)

NA �0.09
(0.4)

�0.35
(0.35)

0.46
(0.34)

RSF Cougar Winter �11.71
(0.05)

NA �0.83
(0.01)

0.41
(0.01)

NA 0.08
(0.01)

�0.08
(0.01)

0.44
(0.01)

Occ Coyote Summer 0.14
(0.3)

1.06
(0.47)

�0.79
(0.24)

�0.29
(0.29)

0.03
(0.31)

0.07
(0.36)

0.13
(0.2)

�0.59
(0.18)

RSF Coyote Summer �11.61
(0.04)

NA 0.18
(0.02)

0.1
(0.02)

�0.04
(0.02)

�0.12
(0.02)

0.06
(0.01)

�0.55
(0.02)

Occ Coyote Winter �0.13
(0.31)

0.6
(0.48)

�1.53
(0.28)

�0.2
(0.27)

NA 0.12
(0.33)

�0.07
(0.22)

�0.16
(0.19)

RSF Coyote Winter �11.56
(0.07)

NA �0.17
(0.02)

0.26
(0.01)

NA �0.15
(0.02)

0.14
(0.01)

�0.23
(0.01)

Occ Elk Summer �0.39
(0.42)

NA 0.03
(0.42)

0.27
(0.49)

NA NA 0.32
(0.28)

0.34
(0.27)

RSF Elk Summer �11.58
(0.01)

NA �0.15
(0.01)

0.26
(0.01)

NA NA �0.35
(0.01)

�0.1
(0.01)

Occ Elk Winter �1.67
(0.65)

NA �0.93
(0.75)

�0.26
(0.66)

NA NA �0.14
(0.43)

0.52
(0.35)

RSF Elk Winter �11.55
(0.01)

NA �0.26
(0.01)

�0.01
(0)

NA NA �0.14
(0.01)

�0.04
(0.01)

Occ Mule deer Summer 2.23
(0.43)

NA �0.01
(0.3)

0.67
(0.38)

�0.03
(0.24)

NA �0.23
(0.23)

0.15
(0.28)

RSF Mule deer Summer �11.63
(0.04)

NA 0.6
(0.01)

0.13
(0)

�0.09
(0.01)

NA 0.13
(0)

�0.04
(0)

Occ Mule deer Winter 0.21
(0.27)

NA 0.01
(0.27)

0.25
(0.3)

0.74
(0.32)

0.6
(0.32)

0.12
(0.27)

0.14
(0.21)

RSF Mule deer Winter �12.54
(0.07)

NA �0.88
(0.01)

�0.74
(0.01)

0.29
(0.01)

0.25
(0)

�0.15
(0)

0.46
(0)

Occ White-tailed
deer

Summer 1.74
(0.5)

NA �1.5
(0.72)

1.12
(0.67)

NA NA 0.01
(0.46)

0.57
(0.57)

RSF White-tailed
deer

Summer �11.63
(0.03)

NA 0.23
(0.01)

0.28
(0.01)

NA NA 0.2
(0)

�0.54
(0.01)

Occ White-tailed
deer

Winter 0.13
(0.44)

NA �2.29
(0.56)

0.74
(0.56)

NA NA �0.1
(0.34)

�0.05
(0.31)

(Continues)
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study area. Road density had no effect on probability of
site use for any species (Table 2). We found no signifi-
cant relationships between any habitat predictors and
bobcat, elk, or wolf occupancy in winter or elk occu-
pancy in summer (Table 2).

Covariate effects on detection probability also varied
by species and season in the occupancy models
(Appendix S1: Table S1). Trail type significantly influenc-
ing detection probability (p-value ≤0.1) for most species,
but with notable differences between predators and prey
(Appendix S1: Table S1). We were more likely to detect
carnivores at camera sites monitoring an open or
decommissioned road compared to a trail. Conversely,
we were less likely to detect deer and elk at camera sites
monitoring open or decommissioned roads compared to
sites monitoring trails (Appendix S1: Table S1). The prob-
ability of detecting most species was also significantly
influenced by camera height, distance to the linear fea-
ture it monitored, or an interaction between the two,
although the strength and directionality of those effects
varied by species and season (Appendix S1: Table S1).
Finally, coyotes and white-tailed deer were more likely
to be detected in winter as temperature increased
(Appendix S1: Table S1).

RSF models

We fit 14 RSFs, that is, one per species and season, to
the used and available resource data. Almost all habitat

predictors had a significant (p-value ≤0.05) effect on
second-order resource selection for all species, although
the strength and directionality of the effects varied by
species and season (Table 2). All species but bobcats
and elk selected for higher elevation areas in the sum-
mer whereas all species selected for lower elevation
areas in the winter. Elk selected for lower elevation in
summer whereas elevation was not significantly corre-
lated with bobcat resource selection in summer
(Table 2). Slope had a positive effect on resource selec-
tion for bobcats in both seasons, and cougars and mule
deer in winter. Conversely, slope had a negative effect
on resource selection for all other species across seasons
(Table 2). The percentage of forested habitat had a sig-
nificant positive effect on resource selection for most
species in both seasons (Table 2). However, mule deer
and elk avoided forested areas in winter. Mule deer
selected for areas with increasing percent grass in win-
ter, whereas bobcats, cougars, coyotes, and mule deer
avoided areas with increasing percent grass in summer
(Table 2). Bobcats and cougars avoided areas with
increasing shrub habitat in summer, and coyotes
avoided increasing shrub habitat in both seasons, but
mule deer and cougars selected for shrub habitat in
winter (Table 2). Finally, road density generally had a
negative effect on second-order resource selection for
most species, although coyotes and white-tailed deer
selected for areas with higher road densities in both
seasons and mule deer selected for these areas in
summer (Table 2).

TAB L E 2 (Continued)

Type of
analysis Species Season

Intercept
(SE)

Study
area
(SE)a

Elevation
(SE)

Percent
forest
(SE)

Percent
grass
(SE)b

Percent
shrub
(SE)b

Road
density
(SE)

Slope
(SE)

RSF White-tailed
deer

Winter �11.65
(0.03)

NA �0.26
(0.01)

0.57
(0.01)

NA NA 0.14
(0.01)

�0.27
(0.01)

Occ Wolf Summer �1.15
(0.47)

�1.65
(0.77)

1.41
(0.42)

0.32
(0.49)

0.27
(0.55)

NA �0.26
(0.33)

�0.06
(0.28)

RSF Wolf Summer �11.78
(0.06)

NA 0.61
(0.02)

0.37
(0.02)

�0.03
(0.03)

NA �0.07
(0.02)

�0.82
(0.02)

Occ Wolf Winter �0.42
(0.65)

�1.42
(0.88)

0.12
(0.53)

0.2
(0.51)

NA NA �0.05
(0.42)

0.16
(0.37)

RSF Wolf Winter �11.59
(0.11)

NA �0.3
(0.02)

0.36
(0.02)

NA NA �0.28
(0.02)

�0.15
(0.02)

Note: Habitat predictors included study area (occupancy models only; northeast study area representing the intercept), elevation, percent of forest, percent of
xeric grass, and percent of xeric shrub landcover within 250 m of an observation, respectively, road density (road length/1 km2), and slope. Individual ID was
included as a random effect in the RSFs. Bolded estimates and SE indicate the predictor was significant (p-value ≤0.1 for occupancy models, p-value ≤0.05
for RSFs).
aStudy area was excluded from deer and elk models because detection data were only used from one study area per species to be consistent with the
distribution of GPS collared ungulates (Northeast study area for elk and white-tailed deer occupancy models; Okanogan study area for mule deer occupancy
models).
bNA indicates the predictor was excluded from the model due to poor convergence or high collinearity with other predictors.
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Comparing habitat associations and
space-use

We were unable to detect a significant effect on the prob-
ability a species would use a camera site for most habitat
predictors in either season whereas we observed almost
all had a significant effect on resource selection. As a
result, the occupancy models and RSFs differed in terms
of which covariates significantly influenced wildlife-
habitat associations for any given species (Table 2,
Figure 3). For instance, occupancy models indicated that
elevation did not influence mule deer occurrence in
either season in the Okanogan study area but the
corresponding RSFs showed mule deer resource selection
was influenced by elevation in both seasons. However, of
the 15 habitat predictors that were significant in the
occupancy models (excluding the three significant study
area effects; Table 2), 13 of the estimated coefficients
shared a consistent directionality with the corresponding
coefficients in the RSFs (i.e., the effects were both posi-
tive or both negative; Table 3, Figure 3). For example,
occupancy models indicated white-tailed deer in the
Northeast study area were less likely to use camera sites
as elevation increased and the corresponding RSFs indi-
cated white-tailed deer selected against areas of higher
elevation. These consistent habitat associations were
spread among the various paired occupancy and RSF
analyses, where 10 of the 14 species- and season-specific
comparisons contained at least one habitat predictor that
shared consistent directionality and significance (Table 3,
Figure 3). We observed two cases where significant habi-
tat predictors in the occupancy models and RSFs had
opposing effects on the probability of use and resource
selection (Table 3, Figure 3). The occupancy models esti-
mated that coyotes and white-tailed deer were less likely
to use camera sites at higher elevations in summer,
whereas the RSFs indicated both species selected for
higher elevation areas in summer (Table 3, Figure 3).
Last, we found the coefficient with the largest magnitude
in the RSF differed from the coefficient with the largest
magnitude in the occupancy model for all paired analyses
(Table 2). The one exception was that elevation has the
largest effect size, compared to all other covariates, on
relative selection and probability of use for cougars in
winter (Table 2).

We found no clear pattern with regard to whether
sex-biased collaring efforts or camera trap placement
influenced whether we saw agreement or disagreement
between corresponding coefficients from the paired
occupancy models and RSFs (Table 3). Most instances
of agreement (8 of the 13 pairs of corresponding coeffi-
cients) and half the instances of disagreement (n = 1)
between the two analyses were associated with species

where both sexes were GPS-collared, whereas fewer
instances of agreement (n = 5) arose from species
where only females were collared. Approximately half
of the instances of agreement (n = 7) were associated
with species that were difficult to detect (detection
probability ≤0.30) whereas both instances of disagree-
ment were associated with species with higher detec-
tion probabilities. We saw more instances of agreement
(n = 8) and one instance of disagreement between the
two analyses for species that were more likely to be
detected by camera traps on open roads compared to
game trails, whereas fewer instances of agreement
(n = 4) and one instance of disagreement arose for spe-
cies that were less likely to be detected on open roads.
We were unable to detect an effect of camera placement
on open roads for mule deer in summer, which
accounted for one instance of agreement between the
occupancy model and RSF results. Finally, we saw
one instance of agreement for a rare species (wolves;
occupancy probability ≤0.30); whereas all other instances
of agreement (n = 12) and disagreement (n = 2) between
the two models were for species that had a moderate
to high probability of using a camera site (occupancy
probability >0.30; Table 3).

Correlation between the probability of use and rela-
tive probability of selection as predicted by the respec-
tive occupancy models and RSFs varied by species and
season. Seven of the paired analyses showed general
similarities in the probability of use and relative proba-
bility of selection once predictions were mapped across
the study areas (i.e., bobcats, cougars, and mule deer in
summer, cougars, coyotes, mule deer, and white-tailed
deer in winter; Figure 4 and Appendix S1: Figure S1).
Except for the winter coyote analyses, the mean corre-
lation between predicted values for any given pixel was
also relatively high for most of these paired analyses
(mean Pearson’s correlation coefficient [r] ranged
0.58–0.91; Table 3). For example, the distribution maps
yielded similar patterns of predicted use and relative
selection across the study areas for bobcats in summer,
mule deer in winter, and cougars in both seasons
(Figure 4 and Appendix S1: Figure S1). Conversely, the
paired predictions for coyotes, white-tailed deer, and
wolves in summer showed conflicting patterns of space
use and low correlation between predicted pixel values
(mean r ranged �0.01 to 0.52; Table 3, Figure 5 and
Appendix S1: Figure S1). Finally, we observed four
instances where predictions from the occupancy
models could not be adequately compared to the RSFs
owing to there being no significant habitat predictors
included in the models (i.e., bobcats and wolves in
winter and elk in both summer and winter; Appendix S1:
Figure S2).
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F I GURE 3 Legend on next page.
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DISCUSSION

Wildlife science is often faced with the challenge of
scaling data from sampled individuals to population-
level patterns to understand ecological relationships
and make informed decisions. Understanding the

limitations and inferential power associated with differ-
ent sampling methods, particularly when deciding
between individual- versus location-based survey per-
spectives, is a key component to scaling that informa-
tion. In this study, we assessed whether data collected
from a Lagrangian (GPS collars) and Eulerian (camera

F I GURE 3 Correlations between estimated coefficients and confidence intervals for the effects of elevation, percent forest, percent

grass, percent shrub, and road density on (a) bobcat, (b) cougar, (c) coyote, (d) elk, (e) mule deer, (f) white-tailed deer, and (g) wolf

occurrence and resource selection in eastern Washington, 2018–2020. Horizontal dashed lines indicate no effect of habitat predictors on a

species’ probability of site use (occupancy model); vertical dashed lines indicate no effect of habitat predictors on a species’ relative
probability of resource selection (RSF). The 90% confidence intervals are depicted for coefficient estimates from occupancy models and 95%

confidence intervals are depicted for coefficient estimates from RSFs, indicating a significant effect if they do not overlap a dashed line.

Paired significant coefficients in the lower left or upper right quadrant indicate agreement between models in the directionality of the

habitat effect for a given species and season; paired significant coefficients in the upper left or lower right quadrant indicate disagreement

between paired analyses.

TAB L E 3 Comparison of wildlife-habitat relationships estimated by occupancy models using camera trap data and resource selection

functions (RSFs) using Global Positioning System (GPS) collar data for seven species in eastern Washington, 2018–2020.

Season and
species

Mean
detection

Mean
occupancy

Road
effect

Collared
sex Elev.

Percent
forest

Percent
grassa

Percent
shruba

Road
density Slope

Correlation
(r)b

Summer

Bobcat 0.12 0.50 1.36 MF ns/ns +/+ ns/� ns/� ns/� ns/+ 0.91

Cougar 0.08 0.57 1.06 MF +/+ +/+ ns/� ns/� ns/� ns/� 0.86

Coyote 0.32 0.63 0.59 MF �/+ ns/+ ns/� ns/� ns/+ �/� 0.25

Elk 0.19 0.44 ns F ns/� ns/+ NA NA ns/� ns/� NA

Mule deer 0.50 0.85 ns F ns/+ +/+ ns/� NA ns/+ ns/� 0.58

White-tailed
deer

0.67 0.92 �0.46 F �/+ +/+ NA NA ns/+ ns/� �0.1

Wolf 0.09 0.18 1.02 MF +/+ ns/+ ns/ns NA ns/� ns/� 0.52

Winter

Bobcat 0.09 0.24 ns MF ns/� ns/+ ns/ns NA ns/� ns/+ NA

Cougar 0.04 0.36 1.09 MF �/� +/+ NA ns/+ ns/� ns/+ 0.83

Coyote 0.27 0.54 0.35 MF �/� ns/+ NA ns/� ns/+ ns/� 0.36

Elk 0.12 0.18 ns F ns/� ns/� NA NA ns/� ns/� NA

Mule deer 0.35 0.58 �0.71 F ns/� ns/� +/+ +/+ ns/+ ns/+ 0.79

White-tailed
deer

0.50 0.75 �0.59 F �/� ns/+ NA NA ns/+ ns/� 0.63

Wolf 0.03 0.26 2.27 MF ns/� ns/+ NA NA ns/� ns/� NA

Note: Estimated mean probability of occupancy and mean probability of detection for each species and season from the occupancy models are reported to
distinguish which species were considered rare (mean occupancy probability ≤0.3) and which were more difficult to detect (mean detection probability ≤0.3).
Road effect indicates whether the placement of camera traps on open roads (compared to game trails) had a positive (+), negative (�), or non-significant (ns)
effect on detection probability. Collared sex indicates whether males and females (MF) or only females (F) were GPS-collared and included when estimating
RSFs. We report the positive, negative, or non-significant effect of each habitat predictor included in the species- and season-specific occupancy models and

RSFs. The first position corresponds to the occupancy model estimates and the second corresponds to RSF estimates. Finally, we present the mean correlation
(r) between predicted pixel values for each pair of analyses once extrapolated across the study areas as a measure of consistency between estimated
distributions from the paired analyses.
aNA indicates the habitat predictor was excluded from the occupancy model and RSF so no comparison was made.
bEstimated effects were non-significant for all habitat predictors in the bobcat (winter), elk (summer and winter), and wolf (winter) occupancy models so the

correlation between predicted probability of use and relative probability of selection could not be calculated for these analyses.
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traps) perspective could be used to make comparable
inferences about habitat associations and space-use pat-
terns for seven wildlife species over multiple seasons.

We found little support for our hypotheses that
comparability between the survey perspectives would
vary with camera placement, species detectability, or

F I GURE 4 Consistent distribution maps from predicted probability of use and relative probability of selection for (a) bobcats in

summer (green) across two study areas and (b) mule deer in winter (blue) in the Okanogan study area in eastern Washington, 2018–2020,
based on paired occupancy models and resource selection functions (RSF). RSF values have been rescaled to range from 0 to 1 to be more

comparable with occupancy model estimates. Darker shades correspond to higher probabilities of use and relative probabilities of selection.

Sampling and analyses for mule deer were restricted to only the Okanogan study area.
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demographically biased collaring efforts. Instead, we
found discrepancies arose among all paired analysis
with respect to the magnitude of significant habitat

relationships within each model. However, the paired
analyses generally agreed on the directionality of
specific wildlife-habitat relationships and at a broader

F I GURE 5 Inconsistent distribution maps from predicted probability of use and relative probability of selection for (a) coyotes in

summer across two study areas and (b) white-tailed deer in summer in the Northeast study area in eastern Washington, 2018–2020, based on

paired occupancy models and resource selection functions (RSF). RSF values have been rescaled to range from 0 to 1 to be more comparable

with occupancy model estimates. Darker shades correspond to higher probabilities of use and relative probabilities of selection. Sampling

and analyses for white-tailed deer were restricted to only the Northeast study area.
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scale, predicted similar distribution patterns. These
results demonstrate that the different perspectives can
yield comparable inferences, but these data types are
not equivalent and fundamental differences between
survey perspectives can lead to divergent inferences
about specific habitat and spatial associations.

When comparing individual covariate effects, we
found large differences between the paired analyses when
assessing the magnitude of effect sizes relative to other
covariates in each model. Specifically, the habitat
predictor(s) with the largest absolute effect size(s) on
habitat use differed from those on relative selection for a
given species and season. For example, in summer, eleva-
tion had the largest absolute effect size in the white-tailed
deer occupancy model, whereas slope had the largest
absolute effect size in the RSF. If inferences are being
made about the magnitude of specific wildlife-habitat
relationships, our results indicate the use of Lagrangian-
and Eulerian-based surveys would yield very different
interpretations of specific habitat predictors. We expected
to find discrepancies between the analyses of species with
a low probability of being detected, species where camera
placement influenced their detection probability, or spe-
cies where only females were collared. Yet the variation
in absolute effect size among covariates in paired ana-
lyses occurred across all species. We suspect these incon-
sistencies arose due to differences in statistical power
associated with the two survey perspectives instead. The
occupancy models had much smaller sample sizes com-
pared to the RSFs due to the finite number of camera
sites and infrequent detections of many of the focal spe-
cies, which limited the power to estimate the effects of
multiple habitat predictors at once (Bailey et al., 2007). In
addition, changes in elevation and forested habitat char-
acterized much of the spatial variation across our camera
sites, likely making them the most predictive covariates
given the low power of the occupancy models. In com-
parison, the RSFs had power to estimate more nuanced
habitat relationships more precisely because the
GPS-collars generated a large (although not independent)
sample of relocation data for each collared-individual
(Street et al., 2021). As a result, differences in sample size
and statistical power associated with our location- versus
individual-based sampling methods limited how compa-
rable the more nuanced inferences were with respect to
the significance and magnitude of specific habitat
predictors.

Despite differences in the magnitude of specific habi-
tat predictors across analyses, we found the directionality
of most wildlife-habitat relationships and the broad-scale
predicted space-use were generally similar between the
individual- and location-based perspectives. In particular,
the paired analyses for cougars, coyotes, mule deer, and

white-tailed deer agreed on the directionality of several
significant habitat predictors in both summer and winter
analyses, suggesting that both perspectives can yield con-
sistent, albeit coarse, inferences about wildlife-habitat
relationships regardless of seasonal variation in species-
specific life-histories. In addition, once we predicted the
probability of use and relative selection across the study
areas, the prediction maps derived from the two survey
perspectives were highly correlated for many of the spe-
cies, especially the predicted distributions of bobcats and
cougars in summer and mule deer in winter. Even when
we found only moderate pixel-by-pixel correlation for
some species (i.e., mule deer in summer, coyote and
white-tailed deer in winter), the respective maps still
highlighted qualitatively consistent areas of high and low
probability of use and relative selection. Furthermore,
these prediction maps were relatively correlated despite
the underlying differences in covariate-specific effects in
the occupancy models and RSFs. These findings suggest
that from a qualitative perspective, data collected from
individual-based sampling methods can capture broad-
scale patterns consistent with those observed from
location-based sampling methods for a diversity of
species.

Our results also captured ecological patterns that we
would expect to see given our understanding of the ecol-
ogy of these different species, suggesting that the consis-
tencies we observed between models were not simply
spurious results but reflected the biology of the individual
species. This is a particularly powerful finding given we
did not test species-specific biological hypotheses but
instead applied a suite of common but very general habi-
tat predictors to all species. For instance, both the occu-
pancy models and RSFs found a positive relationship
between percent forest habitat and the probability of site
use and relative selection, respectively, for bobcats and
cougars. The RSFs further estimated that both species
selected for steeper slopes and avoided areas with
increasing grass habitat for at least part of the year. These
results are fairly consistent with habitat features that ben-
efit stalking predators, like bobcats and cougars, that use
more structurally complex habitats to stalk and quickly
subdue prey (Atwood et al., 2007). As another example,
both analyses found a positive relationship between mule
deer and percent grass and shrub habitat in winter. The
RSF further indicated mule deer selected for steeper
slopes at lower elevations in winter but avoided forested
habitats and increasing road densities. These results
reflect the migratory nature of the Okanogan mule deer
herd, where most individuals congregate in open, shrub-
steppe habitats at lower elevations (which overlap with
areas of greater anthropogenic impact, including higher
road densities) where mule deer rely on the antelope
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bitterbrush for winter forage (Washington Department of
Fish and Wildlife, 2003, 2016). When model predictions
were mapped across the study areas, both distribution
maps highlighted the Okanogan mule deer herd’s winter
range as having a high probability of use and relative selec-
tion. Thus, not only can these disparate data sources pro-
vide complimentary information, but the inferences gained
are ecologically relevant across a number of species and
time periods, further suggesting that data collected at the
individual level can scale to the population.

We found two instances of disagreement regarding
the directionality of covariate effects, where elevation
had opposing effects on the probability of use versus
relative selection for coyotes and white-tailed deer in
summer. These differences scaled up to produce oppo-
site predictions in the distribution maps for both spe-
cies. We hypothesize these discrepancies were related to
differences in the range of elevations sampled by the
cameras and collars. Our camera trap sampling design
allowed us to sample the full elevational gradient across
our study areas (up to 2100 m), whereas the “used” and
“available” locations included in the RSFs were limited
to the general areas where animals were captured and
collared. For example, white-tailed deer were only
GPS-collared at mid- to low-elevations in the Northeast,
resulting in few high elevation areas being available to
them in the RSFs. Fitting linear models over different
covariate ranges can result in different patterns, which
likely led to the conflicting effects of elevation on site-
use and relative-selection. These inconsistencies reflect
a fundamental difference between Lagrangian and
Eulerian survey perspectives where one samples the
movement of specific individuals and the other samples
many individuals as they use specific locations (Aarts
et al., 2008; Tremblay et al., 2009). Due to where coyotes
and white-tailed deer were captured relative to the dis-
tribution of camera traps, the cameras and collars sam-
pled different components of the same population. As a
result, the habitat- and predicted space-use patterns
observed with the collared individuals did not scale to
the patterns we observed at the population-level within
the study area. These discrepancies are consistent with
findings reported in Priddel et al. (2014) and Phillips
et al. (2019), who both hypothesized their Lagrangian-
and Eulerian-based surveys sampled different subsets of
the respective seabird populations they studied, which
led to different distribution patterns. Our results may
offer support for this hypothesis or simply demonstrate
that the behaviors of a few sampled individuals may not
be representative of broader population-level patterns
and ecological relationships (Aarts et al., 2008). How-
ever, given we know we sampled different ranges of
habitat values for the summer coyote and white-tailed

deer analyses, we suspect the observed discrepancies
were owed to spatially mismatched comparisons and
not an outright inability to scale from the individual to
the population.

In addition to the differences in statistical power that
limited our comparisons, we made several assumptions
that may have influenced our findings. We assumed that
occupancy models and second order RSFs would capture
similar wildlife-habitat associations, namely, that habitat
features influencing species occurrence within our study
areas were similar to those that animals used when
selecting their home ranges. Habitat use and selection
are different processes, however, so even where we saw
agreement between paired analyses, the interpretations
of the results are not fully interchangeable (Lele
et al., 2013), and some discrepancies may have partially
been due to estimating different aspects or scales of
wildlife-habitat associations. That said, our goal was not
to compare occupancy models and RSFs per se, but to
compare the inferences gained from different survey per-
spectives when the disparate data types were used to esti-
mate similar ecological relationships. There are other
ways to evaluate animal space-use not considered here
(e.g., utilization distributions and camera detection rates)
which may have resulted in different levels of agreement
between survey perspectives if used to evaluate whether
individual-level data can predict population-level pat-
terns. In addition, we applied the same suite of covariates
to all species, seasons, and models to make for easier
comparison. But some models may have been overpara-
meterized for species with very low detection probability
or lacked additional complexity that was important for
some but not all species (e.g., missing quadratic effect on
elevation). Thus, how we structured the models may also
explain some of the differences we observed. Last, while
we sampled both areas simultaneously, population den-
sity can impact inference from both methods in different
ways. For example, spatial variation in population den-
sity can create abundance-induced heterogeneity in
detection probability (MacKenzie et al., 2017; Royle &
Nichols, 2003), leading to negatively biased estimates in
occupancy (MacKenzie et al., 2017). Similarly, population
density can affect resource selection when intraspecific
competition changes resource availability (Matthiopoulos
et al., 2015). Finally, density-dependent variation in ani-
mal movement and home-range size can affect camera
detection rates (Broadley et al., 2019), as well as influence
the spatial extent of what is considered “available” in an
RSF context. Thus, density-dependent detection and hab-
itat selection make extrapolating wildlife-habitat relation-
ships to different study areas or over time challenging
(Fieberg et al., 2021) and may further add to the inconsis-
tencies we observed.
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Our findings demonstrate that data from camera traps
and GPS-collars yield inconsistent inferences about
covariate-specific estimates of wildlife-habitat associa-
tions, but inferences are more consistent at broad-scales
and from a more qualitative perspective. This knowledge
is particularly valuable if data from different survey per-
spectives are integrated under a single analysis (Phillips
et al., 2019; Priddel et al., 2014; Watanuki et al., 2016).
Integrating the two should allow practitioners to over-
come inherent limitations of each data type while
leveraging their benefits (Fletcher et al., 2019; Miller
et al., 2019). For instance, telemetry data would allow
more nuanced wildlife-habitat relationships to be esti-
mated while randomly deployed cameras could fill spatial
gaps where no collars were deployed and provide infor-
mation about habitats that animals truly do not use
(i.e., non-detection data) with a higher degree of confi-
dence compared to randomly sampling “available”
resources. Sample sizes from telemetry are generally
much larger than camera traps, thus integrating the two
in a formal model would require a way to weight the
data sources appropriately so that larger-sized telemetry
data do not mask the information provided by the camera
data (Fletcher et al., 2019). Our results suggest, however,
formal data integration will require careful consideration
if inference is focused on specific wildlife-habitat rela-
tionships, particularly if the different survey perspectives
yield conflicting results in stand-alone analyses.

Decision makers must often evaluate trade-offs when
designing wildlife studies and monitoring programs,
including whether to use more or less costly sampling
methods to collect sufficient data. Our study highlights
how camera traps can generate reliable information
about broad-scale habitat associations and space-use for
multiple species at once, even without the more nuanced
species-specific information that comes with more expen-
sive individual-based monitoring devices. The non-
invasive nature of camera-based monitoring adds to their
appeal, particularly when compared to individual-based
monitoring approaches which necessitate the physical
capture and handling of wild animals. Wildlife captures
bring risks for both wildlife (Soulsbury et al., 2020) and
human researchers (Caulkett & Shury, 2014), and thus
researchers should carefully consider if the information
gained is worth the cost to those involved or if non-
invasive techniques can provide adequate information.
That said, the density, distribution, and site selection of
location-based surveys could limit the ability to collect a
sufficiently large sample, which can limit statistical
power and ecological inference (Phillips et al., 2019). In
addition, if animals move outside the study area,
location-based sampling methods can miss important
ecological patterns. Individual-based sampling can

capture these patterns even if animals leave the study
area, but this monitoring approach can fail to sample the
actual population of interest if a non-random sample of
individuals was monitored (Aarts et al., 2008; Priddel
et al., 2014; Watanuki et al., 2016) or if the monitoring
was intended to focus on ecological processes within a
defined area. Ultimately, whether to collect data follow-
ing a Lagrangian- or Eulerian-based perspective comes
down to the monitoring objectives. If the goal is to make
inference and decisions about a species (or multiple spe-
cies) within a pre-defined area or understand broad-scale
patterns and relationships, then Eulerian-focused
methods provide sufficient data for making robust,
population-wide inferences. Conversely, Lagrangian-
focused methods may be better suited if the goal is
to draw inference and make decisions about very
specific wildlife-habitat relationships, a species without a
pre-defined focal area, for species that are prone to
long-distance movements or dispersal, or if monitoring
objectives also include collecting information on animal
movement, survival, and reproduction.
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