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A B S T R A C T   

Snow covers a maximum of 47 million km2 of Earth’s northern hemisphere each winter and is an important 
component of the planet’s energy balance, hydrology cycles, and ecosystems. Monitoring regional and global 
snow cover has increased in urgency in recent years due to warming temperatures and declines in snow cover 
extent. Optical satellite instruments provide large-scale observations of snow cover, but cloud cover and dense 
forest canopy can reduce accuracy in mapping snow cover. Remote camera networks deployed for wildlife 
monitoring operate below cloud cover and in forests, representing a virtually untapped source of snow cover 
observations to supplement satellite observations. Using images from 1181 wildlife cameras deployed by the 
Norwegian Institute for Nature Research (NINA), we compared snow cover extracted from camera images to 
Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products during winter months of 
2018–2020. Ordinal snow classifications (scale = 0–4) from cameras were closely related to normalized dif
ference snow index (NDSI) values from the MODIS Terra Snow Cover Daily L3 Global 500 m (MOD10A1) 
Collection 6 product (R2 = 0.70). Tree canopy cover, the normalized difference vegetation index (NDVI), and 
image color mode influenced agreement between camera images and MOD10A1 NDSI values. For MOD10A1F, 
MOD10A1’s corresponding cloud-gap filled product, agreement with cloud-gap filled values decreased from 
78.5% to 56.4% in the first three days of cloudy periods and stabilized thereafter. Using our camera data as 
validation, we derived a threshold to create daily binary maps of snow cover from the MOD10A1 product. The 
threshold corresponding to snow presence was an NDSI value of 40.50, which closely matched a previously 
defined global binary threshold of 40 using the MOD10A2 8-day product. These analyses demonstrate the utility 
of camera trap networks for validation of snow cover products from satellite remote sensing, as well as their 
potential to identify sources of inaccuracy.   

1. Introduction 

Seasonal snow covers 31% of the Earth’s land surface each year, 
playing an integral role in habitat quality for wildlife, water storage for 
hydrological processes, and human uses such as agriculture, forestry, 
and tourism (Mankin et al., 2015; Rizzi et al., 2018). Warming tem
peratures have reduced snow cover extent globally, but these changes 
vary strongly among regions (Brown and Mote, 2009; Solomon et al., 
2007). Accurate snow cover mapping within and across years is thus 
needed to inform regional forecasting and climate change mitigation 
efforts. 

Snow cover is typically measured using ground observations, 

modeling, and remote sensing at scales that range from point mea
surements (e.g., ground observations) to kilometers (e.g., passive mi
crowave sensors at 25-km resolution). Remote sensing from satellites is a 
powerful tool because satellites provide information across broad spatial 
coverages and at fine temporal scales, enabling global and regional snow 
cover maps where in situ measurements may not be possible (Nolin, 
2010). NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS) Collection 6 product provides a daily or every other day 500-m 
resolution optical image from which snow maps are derived. Daily 
MODIS snow observations are highly suitable for continuous snow 
monitoring, which is desirable for many applications, including wildlife 
science (Boelman et al., 2019). For example, daily MODIS snow maps 
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have been used to successfully detect changes in bird nesting success and 
shifts in the timing of mammal migrations (Laforge et al., 2021; Madsen 
et al., 2007). 

The most recent version of the MODIS products (Collection 6.1) in
cludes a daily 500-m global snow product, MOD10A1, and a daily cloud- 
gap filled (CGF) 500-m global snow product, MOD10A1F. Both are 
suitable for use as inputs in hydrological, ecological, and climate models 
(Bokhorst, 2016; Dong and Menzel, 2016). MOD10A1 and MOD10A1F 
provide normalized difference snow index (NDSI) values based on the 
high reflectance of snow in the visible band and low reflectance in the 
near-infrared band, ranging from 0 (snow-free) to 100 (completely 
snow-covered). NDSI values lower than 100 can be completely snow- 
covered (Klein et al., 1998), but adjusting NDSI values to a fractional 
snow cover is no longer included in MODIS products as it is region- 
dependent and other factors may affect when MODIS underestimates 
snow. The overall accuracy of the MOD10A1 product is estimated to fall 
between 79.5 and 96% depending on the tree cover density, snow depth, 
and solar zenith angle in the region of interest (Coll and Li, 2018; 
Franklin, 2020; Hall et al., 2019a; Hall and Riggs, 2007). Optical sensors 
are obstructed by tree cover, and shallow snow might not be bright 
enough to reflect solar radiation since the underlying material is likely to 
be darker (Liang et al., 2008). At high solar zenith angles, chances are 
higher that sensors will be obstructed by clouds and experience higher 
atmospheric distortion (Xin et al., 2012), both of which can also obscure 
or scatter light, decreasing the accuracy of observations. 

Cloud masking in MOD10A1 greatly reduces coverage (Hall et al., 
2019a), and MOD10A1F improves coverage by filling all cloud-masked 
pixels. Each cloud-masked pixel is given the most recently observed 
snow cover value, along with a corresponding “cloud persistence” value 
for the age in days of the snow observation. This product has been used 
in applications such as hydrological snow trend studies (Hao et al., 
2022) and analyses of snow cover impacts on wildlife (Mahoney et al., 
2018). The cloud-gap filled product has been shown to return similar 
accuracy as MOD10A1 in the western US where cloudy periods are 
typically brief (Hall et al., 2019a), whereas accuracy is lower in the 
northeastern and northwestern US where longer cloudy periods are 
common (Gao et al., 2011; Hall et al., 2010). Beyond the US, validation 
of the MOD10A1F product is sparse due to the recency of the product 
availability. Weather stations and other sensors improved MOD10A1F 
maps in China (Hao et al., 2022), but more work in diverse areas with 
longer cloudy episodes, such as high latitude regions, is needed to un
derstand the accuracy of the MOD10A1F product in those areas. Un
derstanding accuracy may inform a region-dependent threshold after 
which additional cloudy days may result in unreliable snow cover esti
mates, and indicate when alternative sources for snow cover, such as 
weather stations or other ground observations, should be used instead of 
gap-filled values. 

Binary products can be developed from the current MODIS snow- 
cover products and may be used to map snow presence/absence. Early 
MODIS snow-cover products categorized pixels as “snow” if the NDSI 
was >40, using Landsat fractional snow-covered area maps from Prince 
Albert National Park in Saskatchewan, Canada (Klein et al., 1998). Later, 
a binary map developed from MOD10A2 categorized a pixel as “snow” if 
any pixel within an 8-day period had an NDSI value >10 (Hall et al., 
2002). The lower threshold increased snow detection but at the cost of 
increased false positives. Now, the threshold for snow presence is 
considered region dependent (Thapa et al., 2019; Zhang et al., 2019), 
and the end-user is recommended to determine the threshold above 
which the corresponding pixel should be identified as snow covered 
(Riggs et al., 2017). Given the utility of binary snow products for 
monitoring snow phenology and subsequent applicability to wildlife 
studies (Curk et al., 2020; Madsen et al., 2007; Thapa et al., 2019), more 
work is needed to develop daily binary snow maps for specific regions. 

In this study, we use cameras deployed in remote locations for 
wildlife monitoring, often referred to as “camera traps,” to evaluate the 
MODIS/Terra MOD10A1 and MOD10A1F products and derive a 

regional threshold for daily binary snow-covered maps in Scandinavia. 
Wildlife camera trap networks have underutilized potential for satellite 
validation that could be a valuable supplement to traditional validation 
methods based on other satellites (Crawford, 2015; Huang et al., 2011), 
weather stations, and ground collection (Negi et al., 2007). Cameras 
provide environmental monitoring (Brown et al., 2016; Sonnentag et al., 
2012), with visual information about environmental conditions along 
with a timestamp. While single cameras have a limited field of view, 
they can be set up in networks of up to many hundreds of cameras across 
large regions (Forrester et al., 2016; Garvelmann et al., 2013). Databases 
are increasingly available to archive camera images across networks, 
furthering the potential for global camera networks to improve envi
ronmental monitoring (Steenweg et al., 2017). For example, Wildlife 
Insights currently hosts over 35 million images from 20,000 camera 
deployments worldwide (https://www.wildlifeinsights.org/home). 
Cameras operate below cloud cover and tree canopy, and they are 
particularly advantageous for monitoring snow cover because they can 
operate for months or years in sub-freezing conditions and difficult-to- 
reach locations (Tobler et al., 2015). 

Wildlife camera traps have been used successfully to evaluate sat
ellite measures of greenness (Sun et al., 2021) and to provide informa
tion on snowpack dynamics at localized spatial scales (Hofmeester et al., 
2019; Sirén et al., 2018). Hofmeester et al. (2019) visually categorized 
snow cover from camera trap images to assess changes in spring and 
autumn molting of mountain hare (Lepus timidus). Sirén et al. (2018) 
found strong correlations between depth readings on snow poles and 
data from the Snow Data Assimilation System (SNODAS) at 80 cameras 
in Vermont. However, extracting information from camera images can 
be challenging. Camera traps use an infrared flash in low light settings, 
resulting in grey-scale images that can make differentiating among ob
jects more difficult (Beery et al., 2019). Camera traps therefore have 
great potential but require more work investigating their utility as 
ground-based remote sensing networks for monitoring snow at broader 
scales. 

Using three years of camera trap images from a network of 1181 
cameras in Norway and Sweden managed by the Norwegian Institute for 
Nature Research (NINA), we compared snow data extracted from cam
era images to MOD10A1 and MOD10A1F NDSI snow cover products. We 
quantified agreement between snow cover values from cameras and 
MODIS NDSI, examining factors we hypothesized a priori would affect 
agreement. We predicted the following:  

1. Agreement would be higher between cameras and NDSI at extreme 
values for snow cover, whereas agreement would be lower when the 
snow is patchy (i.e., moderate NDSI values) due to differences in 
scales between MODIS pixels (500 m) and camera fields of view 
(~20–80 m).  

2. Factors that have been shown to affect MODIS accuracy will affect 
camera and MODIS agreement, such that agreement will be lower 
when canopy cover and latitude are higher (Xiao et al., 2022; Xin 
et al., 2012).  

3. Factors that have been shown to affect image quality will affect 
camera and MODIS agreement, such that images with low lighting 
taken in grey-scale (i.e., with infrared flash) will have lower agree
ment with NDSI than images taken in full color.  

4. Camera observations should agree more with MODIS observations on 
clear sky days compared to cloudy days, and cloud persistence 
should decrease the agreement between cameras and the cloud gap 
filled NDSI product. 

We derived a binary MOD10A1 product of snow cover, using camera 
data to identify a NDSI threshold corresponding to snow presence. 
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2. Methods 

2.1. Study area 

We used images from camera traps in the Scandcam network. 
Scandcam is a long-term, year-round study established in 2010 by the 
Norwegian Institute for Nature Research to monitor recovering Eurasian 
lynx (Lynx lynx). Our dataset includes images from three winter seasons: 
1) January 1 – March 2018, 2) October 1, 2018 – March 2019, and 3) 
October 2019 – March 2020. 

Scandcam camera trap locations are optimized for lynx detection 
across Norway and southern Sweden (59◦ – 69◦ N, 8◦ – 16◦ E), with no 
more than one camera per 2 km2 area across a 350,000 km2 area (Fig. 1; 
Carricondo-Sanchez et al., 2017). Cameras span a 10◦ latitudinal 
gradient, with deeper snow generally occurring in the north and inland 
than along the coast (Saloranta, 2012). Snow usually arrives in Norway 
and Sweden in early October at high elevations and northern areas and 
melts by early April, although sites farther north can remain snow- 
covered into summer (Saloranta, 2012). Because the cameras were 
deployed to detect lynx, they were placed in lynx habitat such as forests 
and sub-alpine areas, but they varied in whether they were under closed- 
canopy or open-canopy areas. Southern Norway and Sweden are char
acterized by boreal coniferous forest dominated by Norway spruce 
(Picea abies) and Scots pine (Pinus sylvestris). In the north, forest 
composition transitions to alpine vegetation dominated by birch species 
(Betula pendula and Betula pubescens) (Bouyer et al., 2015). 

2.2. Data 

2.2.1. MODIS data 
NDSI values were extracted at all camera locations (n = 1181) for all 

days in the study period from the MOD10A1 product on the Google 
Earth Engine public data archive (n = 770 days; Hall et al., 2016). To 
quantify the percentage of usable MOD10A1 NDSI values during our 
study period, we divided the number of non-null NDSI values by the 
total number of values (including cloud-masked pixels with “NA” 
values). The MOD10A1F product was downloaded as GeoTiffs for the 
same days from the EarthData platform (https://search.earthdata.nasa. 
gov/) and uploaded to Google Earth Engine (GEE). MOD10A1F NDSI 

Fig. 1. Locations of Scandcam cameras (yellow points, n = 1181) in Norway 
and Sweden shown over a composite snow cover map created from MOD10A1 
Version 6 that shows mean NDSI snow cover values across the three winters of 
this study (January – March 2018, October 2018 – April 2019, October 2019 – 
April 2020). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 2. Example remote camera images for snow classification. Snow cover was classified using an ordinal scale from 0 to 4, where 0 = 0% snow cover, 1 = ~25%, 2 
= ~50%, 3 = ~75%, and 4 = ~100%. 

C. Breen et al.                                                                                                                                                                                                                                   

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/


Remote Sensing of Environment 295 (2023) 113648

4

and corresponding cloud persistence values were extracted for all 
cameras for the same days after ensuring both MODIS products matched 
projections (Appendix A1). Since MOD10A1F is not offered in the GEE 
archive, MOD10A1F was uploaded as individual tiles. In total, we pro
cessed 3392 tiles for the MOD10A1F product. We used the GEE 
Collection 6 MOD10A1 product rather than Collection 6.1 from Earth
Data, because Collection 6 is commonly used in other studies, and GEE 
has limits on the number of original assets one can store on the server. 
We used Collection 6.1 for MOD10A1F (cloud-gap filled) NDSI and 
cloud persistence products to make use of the most up-to-date version. 
Previous work has demonstrated that Collection 6.1 and Collection 6 
have 99% correspondence, with revisions considered minor (Riggs et al., 
2019). 

2.2.2. Camera images 
Cameras with either infrared flash or white flash (Reconyx model 

HC500, HC600, PC800, or PC900) were secured to trees approximately 
1 m above the ground. Cameras were programmed to take a daily 
“timelapse” image at 8 AM or 12 AM, as well as anytime the camera was 
triggered by motion (e.g., from an animal walking by). For all cameras, 
for every day in our study years that there was a corresponding non-null 
MOD10A1 value, we selected one image per day from the Scandcam 
image inventory. The vast majority of photos were taken under low-light 
conditions resulting in a grey-scale image. To achieve a more balanced 
dataset to evaluate the effect of image color mode on snow labeling 
accuracy, we manually inspected all of the images to select a color image 
if available. We deferred to the timelapse image when taken in white 
flash or daylight hours, or a daytime motion-triggered image, when 
available. Images from the prior day or the day after the image of in
terest were also inspected and labeled if it was hard to discern snow due 
to lighting conditions. 

To assess the effects of cloud cover, we labeled a subset of images 
that corresponded to 250 random days from the MOD10A1F product 
(100 days for each of the full winter seasons, and 50 days for the partial 
season). Additionally, we included images that were inspected while 
labeling MOD10A1 images (n = 510 images). These included both 
before and after images corresponding to MOD10A1 values to help 
confirm the amount of snow. While there is potentially a bias that these 
images would favor lower cloud persistence values, we examined a 
histogram and found a similar distribution of cloud persistence values 
compared to the distribution of cloud persistence values from the full 
MOD10A1F dataset (Appendix A2). 

Images were labeled using Timelapse (http://saul.cpsc.ucalgary. 
ca/time-lapse/), a freely available camera trap labeling software for 
wildlife ecologists. The software automatically extracts metadata 
including time and date, and it provides a customizable interface that 
observers use to label photos. All data can then be exported as a .csv file. 
Snow cover was manually labeled using the software’s user interface on 
an ordinal scale that ranged from 0 (no snow) to 4 (full snow coverage). 
These categories matched those used for snow cover classification at 
Norwegian weather stations (Lussana et al., 2018): 0 corresponded to 
0% snow cover, 1 to ~25% snow cover, 2 to ~50%, 3 to ~75%, and 4 to 
~100% (Fig. 2). Images were initially labeled by two people, but testing 
of a double-labeled subset revealed low agreement among observers 
(kappa coefficient κ = 0.45; McHugh, 2012). There was complete 
agreement at label 0, moderate agreement for values 1–3 (κ = 0.51) and 
low agreement for label 4 (κ = 0.10). The low agreement at label 4 was a 
result of the less-experienced labeler incorrectly labelling low-light im
ages with snow as “no snow.” Thus, the more-experienced observer (C. 
B.) labeled all images. 

2.3. Assessing agreement between camera images and MODIS snow 
values 

To evaluate the relationship between image labels and MOD10A1 
(H1), we fit a general linear model using the ordinal image labels as a 

continuous predictor variable and MOD10A1 NDSI as the response 
variable. Since NDSI values have been noted to “plateau” at higher snow 
values depending on the normalized difference vegetation index (NDVI) 
at that pixel (Klein et al., 1998), a polynomial term was included to 
account for potential non-linearity. All models were fit using program R 
(version 4.2.1). 

To test our prediction that agreement between MODIS and images 
would be highest at extreme values (H1), we compared agreement be
tween MODIS NDSI snow cover values and snow cover from labeled 
camera images (hereafter called “image labels”) across the ordinal 
image labels. We calculated agreement as: 

Agreement = 100 − |MODIS − Camera| (1) 

Where MODIS is the NDSI value and Camera is the labeled image 
value after converting ordinal labels (0–4) to their corresponding 
percent cover values (0, 25, 50, 75, and 100). Agreement could range 
from 0 (i.e., complete disagreement) to 100 (i.e., complete agreement). 
Some amount of disagreement was expected from comparing ordinal 
image labels to continuous NDSI values. Thus, we caution that agree
ment levels should not be compared directly to R2 values from tradi
tional validations. Other studies that assessed MODIS NDSI accuracy 
using cameras and other ground sources converted NDSI values to bi
nary snow and no snow values using a threshold and confusion matrix 
(Thapa et al., 2019; Zhang et al., 2019). We made use of the full range of 
NDSI values by not thresholding the values for agreement assessment, in 
order to statistically assess covariates that affected the level of agree
ment. We equate NDSI to a scale of 0–100% snow cover to represent the 
relationship between NDSI and snow cover in the absence of factors that 
may affect satellite accuracy. Taking the absolute value of agreement 
allowed for clearer interpretation of how different covariates affected 
the magnitude of disagreement regardless of its direction (see 2.4). We 
expected agreement to be highest at the extremes (i.e., labels ~0% and 
~ 100%) and lowest for intermediate labels (i.e., labels ~25%, 50%, and 
75%), so we fit a linear model with a polynomial term to allow for a 
parabolic shape. 

Table 1 
Covariates used to analyze agreement between MODIS and image-labeled snow 
values. Range of each factor is provided. MODIS cloud persistence values were 
only used to assess MOD10A1F (i.e., the cloud-gap filled product) agreement 
with camera images.  

Covariate Range Resolution Hypothesized effect on 
agreement 

Daily MODIS 
NDVI 

− 1.0–1.0 500 m 
Increasing vegetation will 
prevent MODIS obs., decreasing 
agreement with ground obs. 

Landsat tree 
canopy 
cover 

0–100% 30 m 
Increasing tree canopy cover will 
prevent MODIS obs., decreasing 
agreement with ground obs. 

Image color 
mode 

Color (1) or 
Grey-scale (0) 20–30 m1 

The infrared red flash will 
decrease the saturation of the 
image (converting it to grey- 
scale), increasing the difficulty 
of differentiating snow from 
other aspects of the landscape. 

Latitude 59.0–69.0 1 degree 

Increasing latitude increases 
angle of MODIS obs., increasing 
angular distortion and 
decreasing agreement with 
ground obs. 

MODIS Cloud 
Persistence 

0–40 days 500 m 

Increasing cloud cover days 
increases possibility of missed 
accumulation or melt events, 
decreasing agreement with 
ground obs.  

1 Resolution derived from the approximate range that wildlife cameras detect 
(Urbanek et al., 2019). 
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2.4. Assessing agreement between MODIS snow products and factors 
influencing agreement 

To identify factors affecting agreement between snow cover from 
image labels and the MOD10A1 product (H2 and H3), we used a general 
linear mixed-effects model to determine how tree canopy cover, latitude 
(a proxy for solar zenith), and image color mode affected the agreement 
between image labels and MOD10A1 NDSI values (Table 1; Eq. 2). We 
first tested covariates for correlation to avoid overfitting the model. We 
used Pearson’s method for correlation between continuous variables and 
Kendall’s method for correlation between continuous and our categor
ical variable (i.e., image color mode) and found that all correlations 
were below the commonly-used threshold of 0.7 (Dormann et al., 2013; 
Appendix A3). All correlations were also below the threshold for mod
erate correlations (|r| = 0.4), except for tree canopy cover and latitude, 
which was − 0.404. To further examine multicollinearity among pre
dictors, we implemented the variance inflation factor (VIF) test. All 
factors were below 1.2, lower than the conservative threshold of 3 (Zuur 
et al., 2010; Appendix A4). Temporal and spatial autocorrelation in 
snow datasets can inflate parameter estimates and type 1 error (Reink
ing et al., 2022). To evaluate spatial autocorrelation, we conducted 
Moran’s I test using the spdep package in R (Bivand, 2022). We failed to 
detect spatial autocorrelation (Moran’s I statistic = − 0.007, p = 0.55), 
but we included Camera ID as a random effect to account for lack of 
independence among images taken from the same camera. To test for 
temporal autocorrelation, we followed the approach of Sirén et al. 
(2018) and created a relative date variable for each observation using 
the timeDate package in R (Wuertz et al., 2023). The package contains a 
function to convert a date to a relative number of days from a specified 
origin, defaulting to January 1, 1970. We tested for improved model fit 
using Akaike Information Criterion (AIC) values with and without 
including the relative date in an auto-regressive correlation structure (i. 
e., an “ar1” term) with camera station ID included as a grouping vari
able. Incorporating the ar1 correlation structure had a lower AIC score 
[(ΔAIC = − 1830.2 compared to the model without a correlation struc
ture]. We therefore proceeded to use this structure for modeling 
agreement in Eq. (2). We included all covariates in a general linear 
mixed effects model with a Gaussian family using the glmmTMB package 
in R (Brooks et al., 2017):   

Agreement was calculated as described above in Eq. (1). Image color 
mode was classified as “Color” or “Grey-scale” by inspecting image 
saturation. Images taken with infrared flash have low light saturation 

and appear as black-and-white, grey-scale images (Fig. 3). After 
inspecting a histogram of saturation values from a subset of 60 images, 
there was a clear break between images in grey-scale and color at 
saturation values of 0.02 (Appendix A5). We then evaluated this 
threshold using a random subset of 1000 images and found 100% ac
curacy, so we labeled all images with values below 0.02 as grey-scale 
and above 0.02 as color. 

Previous studies found that dense forests affected MODIS NDSI by 
causing an underestimation of the snow cover, using daily NDVI as a 
proxy for forest canopy (Hall and Riggs, 2007; Klein et al., 1998). MODIS 
NDVI is a vegetation index that provides information on vegetation 
canopy greenness, along with leaf area, and chlorophyll and canopy 
structure (Didan, 2015). NDVI in Norway varies spatially due to dif
ferences in vegetation from boreal, deciduous trees in southern Norway 
to alpine shrubs in northern Norway. Within a winter season, NDVI is 
highest in October and November and lowest in February and March, 
likely reflecting both deciduous trees losing canopy leaves in the fall, 
and seasonal snow covering ground vegetation in January to March 
(Appendix A6). To test the efficacy of NDVI as a proxy for tree canopy 
cover, we extracted the corresponding daily MODIS NDVI value at 500- 
m for each labeled image. We also extracted tree canopy cover from the 
30-m Landsat Vegetation Continuous Fields tree cover layer, which es
timates the percentage of horizontal ground covered by woody vegeta
tion >5 m in height from 2015 (Townshend, 2016). Continuous 
predictor variables – tree canopy cover, latitude, and NDVI – were 
normalized by subtracting by the mean and dividing by the standard 
deviation. Model fit was evaluated by examining residuals for dispersion 
and outliers from the DHARMa package in R (Hartig, 2022; Appendix 
A9). 

To test our prediction that agreement between MODIS and camera 
data would decline as the number of cloudy days (i.e., cloud persistence) 
increased (H4), we modeled the agreement between snow cover from 
image labels and the MOD10A1F product as a function of the cloud 
persistence value. Because we expected the relationship between 
agreement and the number of cloudy days to be non-linear, we ran a 
generalized additive mixed model with camera ID included as a random 
effect using the mgcv package in R (Eq. 3; Wood, 2017). We selected 
eight knots for the model, following recommendations for knots to be 
larger than the degrees of freedom (i.e., 6) plus 1 (Wood, 2017). Cloud 
persistence values equal to 0 (MOD10A1 values) were included to allow 
agreement comparison to clear sky days. 

Agreement ∼ (1 | Camera ID)+MOD10A1F Cloud Persistence (3) 

Fig. 3. A grey-scale and color image from the 
camera on 22 November 2018 illustrates how 
light saturation affects the ability of an 
observer to identify snow cover. The image on 
left was the daily timelapse photo taken at 
08:00 h during low light conditions, which 
triggered the camera to take the image in 
grey-scale (i.e., with infrared flash). The 
image on the right was triggered by a wolf 
(Canis lupus) passing by at 14:03 h, when 
there was enough light for a color image. The 
amount of snow in the color image is much 
easier to see.   

Agreement ∼ (1 | CameraID) + DailyNDVI + TreeCanopyCover + Latitude+ ImageColorMode+ ar1(RelativeDate+ 0 | CameraID) (2)   

C. Breen et al.                                                                                                                                                                                                                                   
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Agreement was calculated as described in 2.3 (Eq. 1). Data was 
sparse for persistence times > two weeks, (3% of data), so we limited 
analysis to 14 days. 

2.5. Deriving a threshold for daily binary snow mapping in Norway 

Image labels were converted from the 5-class ordinal scale to a bi
nary classification by reclassifying all images labeled 1–4 as “snow” 
(with a corresponding 1 label), and all image labeled with a 0 as “no 
snow” (with a corresponding 0 label). We identified an optimal 
threshold for the MOD10A1 product by counting the number of true 
positives and false positives when converting to a binary product at each 
NDSI value. We plotted the true positive rate against the false positive 
rate at each threshold value to create a receiver-operating-characteristic 
(ROC) curve using the pROC package in R (Robin et al., 2011). The top 
left corner of the ROC curve is known as Youden’s Index, or the 
maximum difference between the true positive and false positive rate 
(Youden, 1950). Because it weighs both true positive and false positive 
rates equally, it is considered the optimum threshold for a classifier 
when there is equal preference for both classes (Liu, 2012). In addition 
to generating a threshold for all cameras, we repeated this analysis 
separately for cameras within closed canopy (> 20% canopy cover; n =
6229 images) and open canopy (≤ 20% cover; n = 2731 images) because 
thresholds tend to be lower in areas of closed canopy cover (Chokmani 
et al., 2010). 

3. Results 

3.1. Labeled image and MODIS comparisons 

Of the 1,703,702 MOD10A1 snow cover values obtained at all 1181 
cameras during winters 2018–2020, 1,311,249 (76%) were null (cloud- 
masked). Daily labeled images corresponding to non-null values from 
MOD10A1 spanned 665 cameras (n = 8918 images). Cameras not 
included either had no corresponding non-null MODIS value or did not 
have images on file during our study period. There was a strong corre
lation between snow classification from the images and MOD10A1 NDSI 
values (R2 = 0.70, NDSI = − 3.50*image2 + 28.02*image + 10.90, where 
image is the labeled value on the 0–4 scale), but the NDSI values from 
MODIS products plateaued at about 75 (Fig. 4A). We found overall 
strong agreement between snow cover from MODIS NDSI and camera 
images (x̄ = 80.5%, 95% CI = 80.1–80.8; Fig. 4B). Consistent with H1, 
agreement was highest for images with label 0 (corresponding to ~0% 
snow cover; agreement x̄ = 89.2%, 95% CI = 88.6–89.8). Contrary to 
H1, however, agreement was lowest for images with label 4 (corre
sponding to ~100% snow cover; agreement x̄ = 67.1%, 95% CI =
66.7–67.5, Fig. 4B). 

3.2. Factors that influence agreement between cameras and MODIS 

As predicted by H3, latitude and tree canopy cover negatively 
affected agreement between snow cover derived from cameras and 
MOD10A1. However, only canopy cover had a statistically significant 
effect (Table 2). Although significant, the effect was relatively weak, and 
mapping the agreement at each camera relative to tree canopy cover 
showed that agreement was high in many areas with closed canopies 
(Fig. 5A-D). Contrary to expectations, NDVI was not strongly correlated 
with tree canopy cover (r = 0.09, Appendix A3) and had a significant 
positive effect on agreement: image labels and MODIS-derived snow 
cover were in better agreement in areas with higher daily NDVI. Average 
NDVI values in October were twice as high as any other month (Ap
pendix A6), and October likewise had a relatively high proportion of 
0 values with high agreement (Fig. 4B). Thus, we examined the effect of 
removing October observations from our model and found the effect of 
NDVI on agreement changed from strongly positive (coefficient value =
6.60) to weakly negative (coefficient = − 0.075; Appendix A7). Our 
dataset was roughly split between color (n = 4184 images) and grey- 
scale (n = 4733 images), and image color mode positively affected 
agreement as predicted by H4 (Table 2). 

Fig. 4. A) Distribution of MOD10A1 NDSI values within each 
snow cover classification from labeled camera images, and B) 
agreement of snow cover values between MODIS and images 
within each snow cover classification. Images were labeled 
using an ordinal classification with 5 levels (0–4) correspond
ing to snow cover percentages shown. Agreement was defined 
as 100 minus the absolute difference between the image label 
and MOD10A1 NDSI snow value. Red lines show the best fit 
using linear models with polynomial terms. (For interpretation 
of the references to color in this figure legend, the reader is 
referred to the web version of this article.)   

Table 2 
Coefficient estimates, standard error (SE), t-values, and p-values from a general 
linear mixed model assessing factors that affect MODIS and camera agreement 
(n = 8808) for the three winter seasons: 1) January 1–March 2018, 2) October 1, 
2018 – March 2019, and 3) October 2019 – March 2020. Continuous variables 
were normalized by subtracting the mean and dividing by the standard deviation 
prior to analysis. Image color mode is a categorical variable (1: color image; 0: 
grey-scale image). Camera identification was included as a random effect (n =
658). Model results without observations from October 2018 and October 2019 
are included in Appendix A7. Results from the model without October data are 
similar, except that the effect size of NDVI changes from strongly positive to 
weakly negative.  

Parameter Estimate SE t-value p-value 

Intercept 78.88 0.40 196.37 <0.005 
Latitude − 0.48 0.35 − 1.37 0.17 
NDVI 6.60 0.35 29.12 <0.005 
Tree canopy cover − 0.93 0.32 − 2.84 <0.005 
Image color mode (color image) 1.73 0.47 3.63 <0.005  
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3.3. Image labels and MOD10A1F product comparison 

Cloud persistence was a significant predictor for agreement between 
image labels and snow values from the MOD10A1F product. Agreement 
was highest (78.5%) on clear sky days (i.e. cloud persistence = 0) and 
decreased by almost one third (to 56.4%) within the first 3 days before 
leveling off just after (Fig. 6). 

3.4. Optimal threshold derivation for binary snow cover mapping 

At the Youden’s Index point of the ROC curve, the true positive rate 
was 88% and the false positive rate was 11%. This point corresponded to 
a MOD10A1 NDSI snow cover value of 40.5 (Fig. 7). At the commonly 
used threshold value of 40 (Hall et al., 2019a), the true positive rate was 
89% and the false positive rate was 11%, showing that for a slightly 
higher true positive rate, there is not much difference in the false 

positive rate. The current MOD10A2 product employs a threshold of 10, 
which has a 97% true positive rate and 31% false negative rate. When 
we conducted separate analyses for closed canopy (≥ 20%) and open 
canopy (< 20%) sites, the threshold was the same for closed canopy 
locations (40.5) and slightly higher for open canopy locations (41.5). 
Appendix A8 shows the change in true positive and false positive rates 
with different threshold values, along with the results for open and 
closed canopy analyses. 

4. Discussion 

In this study, we identified strong agreement between snow infor
mation obtained from wildlife cameras and MODIS at a regional scale, 
demonstrating the ability of cameras to supplement MODIS snow ob
servations. Previous studies have found strong agreement using fewer 
than 100 cameras in tandem with satellites at localized spatial scales 

Fig. 5. Average agreement between snow cover from labeled images and MOD10A1 snow cover at Scandcam cameras between winter months for 2018–2020. The 
four boxes correspond to four example clusters in counties from north to south: A) north Nordland and Troms og Finnmark; B) south Nordland; C) Innlandet; and D) 
south Viken. The base map is tree canopy cover from 30-m Landsat. Triangles represent cameras within closed canopy areas (≥20%) and circles represent cameras 
within open canopy areas (< 20%). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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(Raleigh et al., 2013; Sugiura et al., 2013), and our findings show this 
relationship holds across a large region and multiple winter seasons. As 
predicted, we found strongest agreement at low snow cover values, but 
agreement was worse than expected at high snow cover values because 
NDSI values plateaued around 75 instead of 100. Cameras, thus, 
demonstrated that an NDSI value of 75 represents 100% snow cover for 
this region. We also demonstrated the ability to customize MOD10A1 to 
create binary snow maps using a camera-derived threshold of 40.5, 

which was nearly identical to the commonly used 40 threshold from 
previous MODIS products (Klein et al., 1998). These findings highlight 
that despite large differences in scales, wildlife camera networks have 
potential to improve satellite monitoring for snow and create new 
products at fine temporal scales. 

Our finding of strong agreement between camera image snow values 
and MODIS snow values may be attributed in part to our method of 
classifying snow cover into five classes. While not a continuous measure, 

Fig. 6. Agreement between image labels and MOD10A1F NDSI snow values as a function of number of cloudy days (i.e., cloud persistence) using a generalized 
additive model. Agreement was defined as 100 minus the absolute difference between the image label and MOD10A1F NDSI snow value. 

Fig. 7. A) A Receiver-Operator Characteristic (ROC) curve when images are reclassified for snow or no-snow by cutting the data with a label ≥ 1 as ‘snow.’ The ROC 
curve shows the performance of the classifier at each threshold, in this case the value of the NDSI snow cover. The closer the curve is to the top left corner, the better 
the performance of the model. The blue point closest to the top left corner is (0.11, 0.88) is referred to as Youden’s Index. B) The true negative rate (orange) and the 
true positive rate (red) graphed separately for every MOD10A1 NDSI snow cover value alongside the Youden’s Index, the difference in between (green). The 
MOD10A1 value at the maximum value of the Youden index is 40.50. The maximum value of the Youden index is the minimum between the true positive rate and 
true negative rate when both classes are given equal weight. The blue points on both graphs represent the same cut point in the data. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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a 5-class ordinal labeling scheme for images extracts more information 
about the amount of snow cover than previous work using binary labels 
(Berman et al., 2018; Sugiura et al., 2013). There are caveats to this 
classification scheme, as agreement was lower at labels 1 (i.e., ~25% 
snow cover), 2 (i.e., ~50%), and 4 (i.e., ~100%), which may highlight 
MODIS uncertainties. For example, MODIS is less accurate when snow is 
thin or patchy, such as labels 1 and 2 (Berman et al., 2018; Dong and 
Menzel, 2016). Similarly, low agreement at label 4 highlights the ten
dency of MODIS to underestimate snow cover in boreal regions (Klein 
et al., 1998). In this region, maximum NDSI equating to 100% snow 
cover appears to be 75, when MODIS plateaus. Cameras can thus be used 
to adjust NDSI for fractional snow-covered maps. However, discrep
ancies in agreement at different classification schemes highlights 
drawbacks to using cameras in tandem with satellite products: patchy 
snow in cameras may be missed or interpreted as complete snow cover. 
Furthermore, labeling for snow cover values can be subjective and have 
uncertainty, as highlighted by low correspondence among labels by two 
observers found during pilot testing. We recommend a single, experi
enced labeler when labeling wildlife photos, and testing for agreement 
among labelers early on. Despite lower agreement within certain classes 
and among observers, strong agreement overall suggests that cameras 
can be an effective method of snow classification when used in tandem 
with satellites. 

We predicted that latitude (i.e., solar zenith angles), ground vege
tation, and the image color mode (i.e., grey or color scale) would limit 
MODIS and camera image agreement (Xiao et al., 2022; Xin et al., 2012). 
Although mapping the agreement at each of our cameras showed a 
general decline in agreement as latitude increased, the effect was not 
significant, and there was still strong agreement even at high latitudes. 
Overall, our findings indicated that latitude and canopy cover had 
relatively minor effects on the accuracy of MODIS snow cover, high
lighting its robustness for monitoring snow trends across Scandinavia. 
Images in grey-scale had lower overall agreement with satellites, and 
they took much longer to label due to the need to study the image more 
carefully to separate snow from vegetation and rocks. Humans and 
artificial intelligence have more difficulty extracting information about 
environmental conditions and wildlife from grey-scale images (Beery 
et al., 2019; Favorskaya and Buryachenko, 2019). Nighttime images are 
inevitable when using motion-triggered wildlife cameras for environ
mental monitoring, but we recommend maximizing the number of color 
images either through prioritizing color photos as we did here, or by 
scheduling timelapse photos to occur during daylight hours. Because 
low-light images were also the main reason why images from one labeler 
had to be relabeled, prioritizing color photos may increase both agree
ment between camera and satellite as well as agreement among labelers. 

Using cameras to assess agreement demonstrated drawbacks of using 
NDVI alongside MODIS NDSI. Contrary to our hypothesis, NDVI posi
tively affected the agreement. While daily NDVI is often included to 
account for the effects of vegetation on MODIS snow detection (Hall 
et al., 2002; Klein et al., 1998; Xin et al., 2012), NDVI has multiple in
terpretations, including green-up, biomass, and plant stress (Huang 
et al., 2021). The positive effect of NDVI on snow cover agreement 
suggests that daily NDVI during winter may not have represented 
vegetation that was obscuring the sensor, but rather the absence of 
snow. We included snow values ranging from 0 to 100, but values equal 
to 0 for both camera images and MODIS will have exact agreement 
whereas our estimates for the other snow labels were approximations. 
When we excluded images from the month October, the month that also 
has the highest average NDVI at the camera locations, we found the 
expected negative relationship between NDVI and agreement for months 
between November and March. October data was important to include 
in our study because the “snow-on” date typically occurs during October 
in Norway, and this date is critical for deriving snow cover phenology 
metrics used by wildlife ecologists studying migration timing and other 
seasonal phenomena. However, the strong effect of October on the NDVI 
estimate reinforces that NDVI was reflecting the absence of snow rather 

than canopy cover. We also examined maximum NDVI over each snow- 
covered season as a covariate instead of daily NDVI, and we found 
similar results (Appendix A7). In contrast, the tree canopy cover co
variate had a negative effect on agreement as expected, even with 
October data included. The Landsat tree canopy cover product is a more 
direct measure of obstructing vegetation than NDVI (Potapov et al., 
2021; Sexton et al., 2013), and our findings indicate that direct canopy 
products may be preferable to NDVI for snow mapping applications. 

Agreement was also affected by cloudy days, supporting previous 
literature on limitations of cloud-gap filled products in cloudy regions 
(Gao et al., 2011; Hall et al., 2019b). However, agreement did not 
decrease linearly with time, but instead decreased rapidly and then 
leveled off after 3 days. This result is likely due to clouds changing the 
snow conditions, such as snowstorms increasing snow cover or increased 
humidity accelerating snowmelt (Zhang et al., 1996). Backfilling pixels 
with the most recent cloud-free value thus has limitations even for short 
cloud persistence durations. In cases when clouds persist for much of the 
winter, our results show that gap-filled products may be highly inac
curate, and wildlife camera data in these regions is especially valuable. 
While cloud-masked MOD10A1 values had substantially higher agree
ment with camera images than gap-filled MOD10A1F values, use of the 
MOD10A1 product comes at the cost of substantial data loss, as only 
23% of pixels were usable due to cloud masking. Similarly, a study 
examining how snow properties affect movements of GPS-collared Dall 
sheep (Ovis dalli dalli) in Lake Clark National Park, Alaska, was only able 
to use 2.2% of their dataset when using cloud-masked MODIS products 
(Mahoney et al., 2018). Ultimately, spatial products of snow cover may 
be able to automate the inclusion of snow values from camera networks 
when satellite values are not accurate or available, utilizing AI and 
machine learning to produce spatially and temporally fill gaps. 

Gap-filling accuracy with camera-labeled values will depend on 
classification accuracy, and image classification error may be further 
reduced by using a binary classification, although some information is 
lost. However, binary maps can be especially useful for identifying 
snow-on and snow-off dates, with important applications for monitoring 
changing snow phenology and impacts on seasonal migrations and 
breeding seasons. The threshold NDSI value of 40.5 we identified using 
wildlife cameras in Scandinavia was remarkably similar to the value of 
40 derived for MODIS from Landsat fractional snow-covered area maps 
in Canada (Klein et al., 1998). Thresholds in forested areas tend to be 
lower than open canopy thresholds because some snow visibility is 
blocked by the trees (Chokmani et al., 2010). Our findings were 
consistent with these trends, but the effect of canopy cover was minor 
(40.5 vs 41.5 for closed vs open canopy sites, respectively). By 
employing Youden’s index to select the optimal threshold, we assumed 
equal weight to both snow and no snow classes. However, depending on 
the mapping needs, other threshold values could be used. For example, 
higher thresholds for snow might be desirable when making maps of the 
first “snow on” date in the fall to prioritize snow detection. Other studies 
have found adjustments to the threshold can increase regional accuracy 
(Chokmani et al., 2010; Da Ronco et al., 2020; Luo et al., 2022). While 
our study found that MODIS detected 88% of snow-covered pixels, Luo 
et al. (2022) found that MODIS identified just 14–18% of snow-covered 
pixels in forests when using conventional MODIS thresholds. MODIS 
snow detection tends to be less accurate in steep areas with complex 
topography (Rittger et al., 2021), and the Luo et al. (2022) study 
occurred in alpine terrain with sites >2700 m a.s.l. and slopes between 
19 and 34◦. Our study occurred at much lower elevations (0–800 m a.s. 
l.), with moderate slopes between 0.5 and 20◦. These differences rein
force our findings that agreement between camera and satellite may 
depend on environmental factors, and when using the two for validation 
or in-tandem, it is important to account for external context. Generally, a 
threshold of 40 is robust for this region, similar to other studies creating 
binary maps from forested ecosystems. A threshold of 10 from 
MOD10A2 would be low for this region, thus researchers should be 
aware that deriving their own binary thresholds is an important step for 
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MODIS Collection 6 products. Future studies could employ this approach 
to create custom thresholds from cameras in their regions of interest. 

Because our cameras were optimized for lynx detection, we did not 
control for field of view. Previous work suggests that wider field of views 
are more advantageous for snow cover monitoring (Parajka et al., 2012). 
Our results suggest that even narrow fields of view offer insight into 
snow conditions, but wider fields should provide a better observation of 
snow conditions at a scale more similar to satellite remote sensing. 
Additionally, we did not control for possible observation delays, which 
could be up to 24 h depending on when the satellite passes over the area 
of interest and when the camera image is taken (Sugiura et al., 2013). 
One camera trap image per day appeared sufficient to connect to 
MODIS, but we recommend multiple images per camera each day to 
increase labeling options. Examining the outliers from our model eval
uations aligns with these recommendations, because outlier images 
consisted primarily of those with narrow fields of view and active 
weather (Appendix A9). Continuous indices of vegetation greenness 
have been derived from camera images using RGB values as proxies for 
vegetation (Sun et al., 2021), but to our knowledge, no automated 
method of extracting continuous snow cover indices from camera im
ages has been developed. AI algorithms for automated snow detection 
from camera images are a promising area of development to increase the 
utility of wildlife camera networks for environmental monitoring. 

Our study focused on comparing snow cover from cameras to MODIS 
snow products, and we found surprisingly strong agreement considering 
differences in spatial resolution. The Visible Infrared Imaging Radiom
eter Suite (VIIRS) instrument has a snow product similar to MODIS at 
375-m spatial resolution (Riggs et al., 2017). Future work could explore 
incorporating multiple cameras in one satellite pixel to improve snow 
monitoring of patchy snow conditions, such as during snow accumula
tion and snow melt. Alternatively, camera images could be matched to 
finer-resolution snow products derived from satellites such as Landsat, 
Sentinel, and Planet CubeSat (Cannistra et al., 2021; Chokmani et al., 
2010; Riggs et al., 2017). Snow maps must be derived by manually 
creating the NDSI maps from Landsat, Sentinel, and Planet sensors, but 
these products have spatial resolutions at 30 m, 10 m, and 0.7–3 m, 
respectively, closer to the camera field of view (Cannistra et al., 2021). 

5. Conclusion 

As the remote sensing community continues to develop new global 
products, the wildlife ecology community continues to expand camera 
trap networks for continuous biodiversity monitoring (Pettorelli et al., 
2014; Steenweg et al., 2017). Connecting camera traps to satellite data 
represents an important step towards an interconnected network of 
ground-based remote sensing data that can improve researchers’ and the 
public’s ability to determine environmental changes and subsequent 
impacts on sensitive species. In Norway, snow cover extent has 
decreased by >20,000 km2 (6% of the country area) since 1961 due to 
changes in temperature and precipitation (Rizzi et al., 2018; Skaugen 
et al., 2012). When these trends are incorporated into climate impact 
models, predictions suggest accelerated rates of local extinctions across 
273 species of Norwegian vegetation (Niittynen et al., 2018). With the 
increasing number of cameras operating as environmental monitoring 
devices, we can improve our understanding of both environmental and 
wildlife responses in a changing climate. 
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