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Abstract. Measuring connectivity is critical to the study of fragmented populations. The
three most commonly used types of patch connectivity measures differ substantially in how
they are calculated, but the performance of these measures has not been broadly assessed.
Here I compare the ability of nearest neighbor (NN), buffer, and incidence function model
(IFM) measures to predict the patch occupancy and colonization patterns of 24 invertebrate,
reptile, and amphibian metapopulations. I predicted that NN measures, which have been
criticized as being overly simplistic, would be the worst predictors of species occupancy and
colonization. I also predicted that buffer measures, which sum the amount of habitat in a
radius surrounding the focal patch, would have intermediate performance, and IFMmeasures,
which take into account the areas and distances to all potential source patches, would perform
best. As expected, the simplest NN measure (distance to the nearest habitat patch, NHi ) was
the poorest predictor of patch occupancy and colonization. Contrary to expectations,
however, the next-simplest NN measure (distance to the nearest occupied [source] patch, NSi )
was as good a predictor of occupancy and colonization as the best-performing buffer measure
and the general IFM measure Si. In contrast to previous studies suggesting that area-based
connectivity measures perform better than distance-based ones, my results indicate that the
exclusion of vacant habitat patches from calculations is the key to improved measure
performance. I highlight several problems with the parameterization and use of IFM measures
and suggest that models based on NSi are equally powerful and more practical for many
conservation applications.

Key words: connectivity; fragmentation; incidence function model; isolation; logistic regression; meta-
analysis; metapopulation dynamics; model selection; occupancy.

INTRODUCTION

Habitat loss and fragmentation are widely recognized

as major threats to biodiversity (Baille et al. 2004).

Ecological theory and empirical evidence both show that

species occupancy and colonization probabilities are

lower in habitat patches that are smaller and more

isolated (MacArthur and Wilson 1967, Prugh et al.

2008). Thus, the study of connectivity (i.e., the converse

of isolation) is one of the most prolific fields in

conservation ecology today (Crooks and Sanjayan

2006). Much debate has surrounded the definition of

connectivity, leading to distinctions between structural,

functional, landscape, patch, and habitat connectivity,

among others (Tischendorf and Fahrig 2000b, Moilanen

and Hanski 2001, Lindenmayer and Fischer 2007).

Within each of these subcategories, a variety of methods

have been used to measure connectivity, including grid-

based, area-based, distance-based, and movement-based

methods. Because different methods can produce

conflicting connectivity estimates (Tischendorf and

Fahrig 2000a), choosing an appropriate measure is a

challenging and critical step in fragmentation studies.

To some extent, the choice of an appropriate measure
depends on the study design. One of the most commonly

used fragmentation study designs is patch-based mon-

itoring, wherein species occupancy is recorded in a

network of discrete habitat patches of varying size and

isolation. This is the standard design used by metapop-

ulation ecologists, and it is also used by many

conservation biologists. Attributes of the habitat patch-

es, intervening matrix areas, and/or the species of

interest are used in a modeling framework to determine

how strongly connectivity and other factors influence

species occupancy, colonization, or extinction probabil-

ities. In this design, connectivity is considered to be a

patch-specific attribute and is often referred to as ‘‘patch

connectivity’’ (Moilanen and Hanski 2001, Tischendorf

and Fahrig 2001). Patch connectivity (or isolation) can

be measured in a variety of ways, from the simplest

nearest-neighbor distance to more complex formulas

that include patch distances, areas, species dispersal

abilities, and other scaling parameters (known as

incidence function model measures; Hanski 1994b).

Because nearest-neighbor (NN) measures are so easy to

calculate, they have been used extensively by ecologists

and conservation planners. However, these measures do

not take into account the area of surrounding habitat
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patches and have been criticized as being overly simplistic

(Moilanen and Nieminen 2002). Because interpatch

distances are usually calculated from center to center,

the shapes and areas of patches could strongly influence

connectivity; patch edges may be close together if the

patches are large, even if the patch centers are far apart.

Thus, some researchers have advocated and used area-

based buffer measures, which sum the amount of habitat

in a given radius around a focal patch (Saari et al. 1998,

Beard et al. 1999, Pope et al. 2000, Bender et al. 2003,

Tischendorf et al. 2003). However, buffer measures do not

include any information about distances between patches,

and they may also be sensitive to the radius size (Moilanen

and Nieminen 2002, Bender et al. 2003). Incidence

function model (IFM) measures take into account both

the areas of and distances to surrounding patches, and use

of IFMmeasures has increased following a study showing

their superior performance in comparison to buffer and

NN measures (Moilanen and Nieminen 2002). A more

recent study found little difference in the performance of

NN, buffer, and IFM measures, however, calling into

question the necessity of using the more complex IFM

measures (Winfree et al. 2005). Both of these studies were

limited in their scope, using two to three metapopulations

to evaluate connectivity measure performance. Differenc-

es in scale, vagility, habitat, and other variables among

species and sites limit the applicability of narrow

evaluations, and a broader test is needed to adequately

examine these connectivity measures.

In this study, I evaluated the performance of six NN,

buffer, and IFM measures using occupancy data from

24 invertebrate, reptile, and amphibian metapopulations

from around the world. I used logistic regression models

to predict species occupancy and colonization probabil-

ities using each connectivity measure, and I compared

model performance using three robust techniques:

Akaike Information Criterion (AIC) weights, explained

deviance (pseudo-R2), and Wald tests (regression

coefficients divided by their errors). Two of the

metapopulations included in this study were those used

by Moilanen and Nieminen (2002) in their evaluation of

patch connectivity measures. Of the six connectivity

measures evaluated here, two are nearest-neighbor

(nearest habitat, NHi, and nearest source, NSi ), two

are buffer (buffer habitat, BHi, and buffer source, BSi ),

and two are IFM (Si and ASi ) measures (see Table 1 for

formulas). These measures were chosen primarily

because of their frequent use in the literature, but I will

briefly highlight some other important characteristics.

The NN measure NHi and buffer measure BHi are

both calculated without regard to the occupancy status

of patches, whereas only occupied patches (i.e., potential

source patches) are included in calculations of NSi, BSi,

Si, and ASi. Several other formulations of Si have been

used in studies (see Bonte et al. 2004, Pellet et al. 2007),

but the one used here is the most common (Hanski

1994a). Previous evaluations have categorized patch

connectivity measures primarily as area-based or dis-

tance-based (Moilanen and Nieminen 2002, Bender et

al. 2003, Winfree et al. 2005). While I also highlight this
important distinction, this is the first evaluation to

directly compare measures that include all habitat
patches in their calculations of connectivity with

analogous measures that include surrounding patches
only if they are occupied.

As stated above, another important distinction among
connectivity metrics is the unit of measure. Nearest-
neighbor measures are in units of distance, whereas

buffer and IFM measures are in units of area. Note that,
in contrast to the other connectivity measures, NN

measures increase as connectivity decreases. Thus, NN
measures are perhaps more accurately described as

isolation measures. Although IFM measures include
interpatch distances in the calculations, these distances

are divided by the migration distance of the species; thus,
IFM measures are scaled by distance but are fundamen-

tally area-based. As a result of this scaling, IFMmeasures
have more parameters than the others (Table 1).

Unlike the other five measures, the IFM measure ASi

has not been commonly used in the literature. I

evaluated it primarily because it was the best-performing
measure evaluated by Moilanen and Nieminen (2002).

While the other area-based measures quantify the
amount of habitat surrounding a focal patch, this

measure also takes into account the potential positive
effect that focal patch area has on connectivity and

metapopulation dynamics (e.g., larger patches should
supply and intercept more dispersers). I also evaluated
multiple regression models that included the connectiv-

ity measure and focal patch area as independent
predictors. Because focal patch area arguably has an

impact on metapopulation dynamics that is largely
separate from connectivity, I focus primarily on

evaluating the connectivity measures without terms for
focal patch area (NHi, BHi, NSi, BSi, and Si; Table 1).

I expected that IFM measures would perform better
than buffer and NN measures for three main reasons.

First, IFM measures contain more information about
the patch network and species’ dispersal abilities.

Second, the negative exponential dispersal kernel used
in IFM measures is well justified biologically and rooted

in metapopulation theory (Hanski 1994b). Third,
Moilanen and Nieminen (2002) found that IFM

measures were superior to buffer and NN measures
using two of the metapopulations included in this study.

Because inaccuracy in the additional biological infor-
mation could potentially have strong effects on the
performance of IFM measures, I also examined the

effect of varying parameters a and b for several
metapopulations (see Plate 1).

METHODS

Data acquisition

The 24 metapopulations included in this study are a
subset of a larger meta-analysis (Prugh et al. 2008).

Studies were found by a comprehensive search using the
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Web of Science in March 2005 with the terms ‘‘patch

occupancy,’’ ‘‘habitat occupancy,’’ ‘‘metapopulation,’’

‘‘island biogeography,’’ and ‘‘incidence function.’’ For-

ward and backward citations of articles found in these

searches were also used to locate studies. Studies were

included if 10 or more discrete terrestrial habitat patches

were surveyed and raw occupancy data for birds,

mammals, invertebrates, reptiles, or amphibians could

be obtained (either from the published papers or directly

from the authors). Data were available to calculate

buffer and IFM measures for 24 of the 1015 metapop-

ulations included in the larger meta-analysis. These

metapopulations occurred in 13 different landscapes;

some studies recorded occupancy data for multiple

species in a landscape. The fragmented populations

included in this study all showed evidence of metapop-

ulation dynamics through documented colonizations,

extinctions, and/or interpatch dispersal events. All

metapopulations occurred in moderate to highly frag-

mented landscapes, with habitat patches comprising 2%

of the landscape area on average (range , 0.01–17%, n¼
13 landscapes). The number of patches in each

landscape ranged from 32 to 1716 (Table 2).

Connectivity measure calculations

and parameter evaluation

The distance matrix dij was calculated using patch

coordinate data for each metapopulation. I wrote code

to calculate dij and each connectivity measure in

program R (R Development Core Team 2007). Patch

coordinates were not provided for three metapopula-

tions, and I used the NSi and Si calculations provided by

the authors in these cases (metapopulations 1, 4, and 22;

Table 2).

Published values for parameters a, b, and c were used

to calculate Si when available (Table 2). In a few cases, I

used published mean dispersal distances to calculate a.
Parameter values were set to 1 if information was not

available. Excluding metapopulations without estimates

of a did not change any results. In calculating the buffer

measures, I set the radius equal to the average migration

distance of the focal species (1/a), because that radius

led to the best-performing buffer measure among those

evaluated by Moilanen and Nieminen (2002).

To examine the effect of a and b on the performance

of Si, I varied a from 0.01 to 100 while holding b

constant at its published value and varied b from 0 to 1

while holding a constant at its published value. This

analysis was conducted for the three metapopulations

with published estimates for both a and b and patch

coordinate data (metapopulations 15, 23, and 24; Table

2). I did not examine the scaling parameter c because it

was rarely estimated or used in studies.

Logistic regression analyses

Logistic regression analyses were run in program R for

each metapopulation using each of the six connectivity

measures as predictors and either occupancy or coloni-

zation as the dependent variable. Colonization events

could be recorded only in cases in which more than one

TABLE 1. Description of the models and connectivity measures evaluated.

Model Model formula
Connectivity measure

formula Measure type Description of measure

BH ln
p

1� p

� �
¼ b0 þ b1BHi þ e BHi ¼

X
dij� r

Aj buffer area of all habitat within a radius

BS ln
p

1� p

� �
¼ b0 þ b1BSi þ e BSi ¼

X
dij� r

Aj 3 k buffer area of occupied habitat within
a radius

S ln
p

1� p

� �
¼ b0 þ b1Si þ e Si ¼

X
j 6¼i

expð�adijÞAb
j 3 k IFM distance-weighted area of occupied

habitat

AS ln
p

1� p

� �
¼ b0 þ b1ASi þ e ASi ¼ Ac

i 3 Si IFM Si multiplied by the scaled area
of patch i

NH ln
p

1� p

� �
¼ b0 þ b1NHi þ e NHi ¼ min(dij) nearest neighbor distance to the nearest patch

NS ln
p

1� p

� �
¼ b0 þ b1NSi þ e NSi ¼ min(dij) 3 k nearest neighbor distance to the nearest occupied

patch

A 3 NS ln
p

1� p

� �
¼ b0 þ b1NSi þ b2Ai

þ b3NSiAi þ e
NSi ¼ min(dij) 3 k nearest neighbor NSi multiplied by the area of patch

i in a multiple regression model

Notes: Abbreviations are: p, probability of occupancy or colonization; b0, intercept; bx, regression coefficient of variable x; e,
error term; Ai, area of focal patch (patch i ); Aj, area of patch j (patch j is any other patch in the landscape; patch j 6¼ i); dij, distance
between focal patch i and patch j; r, radius of buffer around focal patch i (in this study, r¼ 1/a, the mean migration distance of the
species); k, occupancy or colonization status of patch (1 ¼ occupied or colonized, 0 ¼ not occupied or colonized); a, 1/average
migration distance of the species (but see Discussion for other definitions); b, a parameter scaling the effect of emigration to area; c,
a parameter scaling the effect of immigration to area.
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year of occupancy data were provided (n¼ 15 metapop-

ulations; Appendix B). In these cases, patch occupancy

was recorded as the number of years occupied vs. the

number of years surveyed, and colonization was

recorded as having occurred if an empty patch became

occupied.

As a convention throughout the paper, I refer to each

logistic regression model using the same notation that

was used for the predicting connectivity measure, but

without the subscript i. For example, the model that

used NHi as a predictor is referred to as model NH

(Table 1). I evaluated simple logistic regression models

for each connectivity measure and multiple regression

models that included focal patch area Ai as a predictor

in addition to the connectivity measure. In this way, the

independent and combined influences of focal patch area

and surrounding patches were examined. I calculated

these multiple regression models as an alternative to the

measure ASi, which included Ai in the calculation of the

connectivity measure itself. Because all of the simple

regression models were improved similarly by the

addition of Ai, I show results for one multiple regression

model only, A 3 NS. In this model, NSi and Ai, as well

as their interaction, were used as predictors (Table 1).

Model comparison

Three metrics were calculated to evaluate model

performance for each metapopulation: (1) pseudo-R2

values, (2) Akaike Information Criterion (AIC) values,

and (3) Wald tests. The pseudo-R2 measures the amount

of deviance (i.e., variation) in occupancy or colonization

that is explained by each model. This statistic is

analogous to the R2 of linear regression (Hagle and

Mitchell 1992) and was calculated as:

pseudo-R2 ¼ null deviance� residual deviance

null deviance
:

The AIC is commonly used to rank competing models,

with the best model having the lowest AIC value and

highest model weight (wi ). The AIC values and wi were

calculated using standard techniques (Burnham and

Anderson 2001). The Wald statistic (Z ) was calculated

as C/SE, where C is the the coefficient of the logistic

regression and SE is the associated standard error (Sokal

and Rohlf 1995). The Z values were calculated for the

six simple regression models only. Because the multiple

regression model A 3 NS has three Z values (one each

for NSi, Ai, and NSi 3 Ai ), this metric was not used.

The overall performance of each model was evaluated

across metapopulations using mixed-model ANOVAs.

TABLE 2. Metapopulations used in this study.

Metapopulation Reference Species Taxon Location
N

patches
N

years a b c

1 Biedermann (2005) Gonioctena olivacea beetle Germany 237 3 1�� 0.5 1
2 Eber and Brandl (2003) Urophora cardui fly Germany 512 5 1§ 1 1
3 Fleishman et al. (2002) Speyeria nokomis butterfly Nevada, USA 39 11 0.25 1 1
4 Hanski et al. (1994) Melitaea cinxia butterfly Finland 47 1 1§ 0.3 1
5 Hjermann and Ims (1996) Decticus

verrucivorus
cricket Norway 70 2 0.02}� 1 1

6 Hokit et al. (1999) Sceloporus woodi reptile Florida, USA 95 3 10 1 1
7 Hokit et al. (1999) Cnemidophorus

sexlineatus
reptile Florida, USA 95 3 1 1 1

8 James et al. (2003) Pseudophilotes
sinaicus

butterfly Egypt 41 2 2 1 1

9 Knapp et al. (2003) Rana muscosa amphibian California, USA 1716 3 1 1 1
10 Maes and Bonte (2006) Oedipoda

caerulescens
grasshopper Belgium 133 2 25 1 1

11 Maes and Bonte (2006) Alopecosa fabrilis spider Belgium 133 2 4 1 1
12 Maes and Bonte (2006) Xysticus sabulosus spider Belgium 133 2 4 1 1
13 Maes and Bonte (2006) Hipparchia semele butterfly Belgium 133 2 2 1 1
14 Maes and Bonte (2006) Issoria lathonia butterfly Belgium 133 2 2 1 1
15 Hanski (1994b) Scolitantides orion butterfly Finland 70 3 0.35 0.3 0.2
16 Schmidt (2005) Alytes obstetricans amphibian Switzerland 32 2 1} 1 1
17 Schmidt (2005) Bufo calamita amphibian Switzerland 32 2 1 1 1
18 Schmidt (2005) Triturus helveticus amphibian Switzerland 32 2 1 1 1
19 Schmidt (2005) Triturus alpestris amphibian Switzerland 32 2 1 1 1
20 Schmidt (2005) Bombina variegata amphibian Switzerland 32 2 1 1 1
21 Schmidt (2005) Rana lessonae amphibian Switzerland 32 2 1 1 1
22 Valimaki and Itamies (2003) Parnassius

mnemosyne
butterfly Finland 58 1 9 1 1

23 Wahlberg et al. (1996) Melitaea diamina butterfly Finland 94 1 4.9 0.2 1
24 Wahlberg et al. (2002a) Euphydryas aurinia butterfly Finland 113 2 0.42 0.1 1

Notes: Distance was measured in kilometers unless otherwise noted. Parameter values (a, b, and c) used to calculate Si are
shown. A value of 1 was used when published parameter values were not available.

� Value used in original study, not based on dispersal estimates.
� Distance was measured in meters.
§ Value used in original study, based on dispersal estimates.
} Estimated based on published dispersal estimates.
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‘‘Study’’ was included as a random effect to account for

the non-independence of data (some metapopulations

were reported in the same studies; Table 2), and

‘‘connectivity model’’ was included as a fixed effect.

Proportions (pseudo-R2 values and AIC weights) were

arcsine square-root transformed prior to analyses.

In traditional meta-analyses, effect sizes are weighted

by the inverse of their associated error estimates to

evaluate hypotheses across studies (Hedges and Olkin

1985). The Z values are in essence weighted effect sizes:

the regression coefficients (C ) indicate how strongly

occupancy or colonization changes with connectivity,

and these effect sizes are divided by their associated

error estimates (SE). Nearest-neighbor measures have

negative coefficients because connectivity decreases with

increasing distance, whereas buffer and IFM measures

have positive coefficients (connectivity increases as BHi,

BSi, Si, and ASi values increase). Thus, absolute values

were used to compare Z values among models.

RESULTS

The six connectivity measures differed significantly in

their ability to explain patterns of occupancy across the

24 metapopulations, and the three model comparison

techniques (pseudo-R2, AIC, and Wald tests) ranked the

competing models similarly (Figs. 1 and 2). The simplest

NN measure, NHi, and the simplest buffer measure,

BHi, were the poorest predictors of occupancy and

colonization in all comparisons (Figs. 1 and 2, Table 3).

The NN measure NSi, buffer measure BSi, and IFM

measure Si (all of which excluded vacant patches)

consistently performed better than NHi and BHi (which

included all patches).

Contrary to expectations, Si did not outperform NSi
or BSi. Measures NSi, BSi, and Si explained similar

amounts of deviance in occupancy and colonization

(Figs. 1A and 2A) and had similar Z values (Figs. 1B

and 2B). Model NS had a significantly higher AIC

weight than S when models with terms for focal patch

area were excluded (Fig. 1D, Tukey tests). Models AS

and A 3 NS were better predictors of occupancy than

the other models, likely due to the term for focal patch

area in these models (Fig. 1). Interestingly, these models

were not better predictors of colonization than S, NS,

and BS, which lack the focal patch area term (Fig. 2).

Parameters a and b both affected the performance of

Si, and all three metapopulations evaluated showed the

same general patterns (Fig. 3). The Z values decreased

FIG. 1. Ability of connectivity measures to predict occupancy probabilities across 24 metapopulations. Six simple logistic
regression models (BH, BS, S, AS, NH, and NS) and one multiple regression model (A 3 NS) were evaluated using three model
comparison techniques: (A) the amount of deviance in patch occupancy explained by each model (pseudo-R2), (B) Wald tests, and
(C, D) Akaike Information Criterion (AIC) model weights (wi ). See Table 1 for descriptions of the connectivity measures, which are
either area-based (open circles) or distance-based (solid circles). Means and 95% confidence intervals are shown. Absolute values of
Z values (logistic regression coefficient/SE) fromWald tests are shown for the six simple models in (B). The AIC weights are shown
for (C) all seven models and (D) the five connectivity models without terms for focal patch area.
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from 0 to a low of �8 as a increased from 0.01 to 0.1,

then sharply increased as a increased from 0.1 to 1, and

continued to increase until reaching peak values when a
was 20–40 (Fig. 3A, C, E). Realistic values of a (up to

0.25) led to significant negative Z values in all three

metapopulations, with the interpretation that occupancy

actually decreases with increasing connectivity. Signifi-

cant positive Z values were obtained when a was .1.5

for all metapopulations. The Z values were far from

their peaks when a was 1, a value that is often used by

default when dispersal information is unavailable.

Published values of a, which were based on mark–

recapture studies (Hanski et al. 2000, Moilanen and

Nieminen 2002, Wahlberg et al. 2002a), led to nonsig-

nificant Z values in two of the three metapopulations.

The Z values did not change as dramatically in response

to variation in parameter b, but in all cases Z values

steadily declined as b increased from 0.01 to 1 (Fig.

3B, D, F).

DISCUSSION

Using a quantitative meta-analysis of 24 invertebrate,

reptile, and amphibian metapopulations and three

robust techniques to evaluate performance, I demon-

strate that incidence function model (IFM) measures are

not better than buffer or nearest-neighbor (NN)

measures at predicting patch occupancy and coloniza-

tion probabilities. This finding is quite surprising, given

that NN measures include very little information about

the patch network and no species-specific information.

Logic and theory tell us that it should matter whether

neighboring patches are large or small, how many of

them surround the focal patch, how close they are, and

how far the species can disperse. The IFM measures

elegantly include this information in equations that

account for the exponential decay typical of dispersing

propagules, as well as the relationships between immi-

gration, emigration, and patch area, which are likely to

be nonlinear and species-specific. The Si measure relates

directly to other metapopulation models and has strong

theoretical justification (Hanski 1994a). These logical

and theoretical advantages, however, do not translate

into an empirical advantage when it comes to predicting

patch occupancy and colonization probabilities. This

study shows that, in most cases, the distance to the

nearest source patch (NSi ) contains sufficient informa-

tion to predict patterns of species occupancy and

colonization in comparison to Si.

Comparison of model performance

Not all of the NN measures performed well. The

simplest NN measure, distance to nearest habitat patch

(NHi ), was a poor predictor of occupancy, as was the

simplest buffer measure, the area of all habitat within a

given radius (BHi, where the radius equals the average

migration distance of the species). By altering calcula-

tions to exclude vacant patches, however, the perfor-

mance of both the nearest neighbor and the buffer

measures were greatly improved (NSi and BSi, respec-

tively). Likewise, Bastin and Thomas (1999) found that

NSi was better than NHi at predicting the occurrence of

22 tree species in a fragmented urban landscape. This

finding is consistent with metapopulation and island

biogeography theory, because the proximity of source

populations rather than habitat patches per se should

most strongly affect the probability of colonization and

FIG. 2. Ability of connectivity measures to predict coloni-
zation probabilities across 15 metapopulations. Six simple
logistic regression models (BH, BS, S, AS, NH, and NS) and
one multiple regression model (A 3 NS) were evaluated using
three model comparison techniques: (A) the amount of
deviance in patch occupancy explained by each model
(pseudo-R2), (B) Wald tests, and (C) Akaike Information
Criterion (AIC) model weights (wi ). Absolute values of Z
values (logistic regression coefficient/SE) from Wald tests are
shown for the six simple models in (B). See Table 1 for
descriptions of the connectivity measures, which are either area-
based (open circles) or distance-based (solid circles). Means and
95% confidence intervals are shown.
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occupancy (MacArthur and Wilson 1967, Gilpin and

Diamond 1976).

Unlike Moilanen and Nieminen (2002), who conclud-

ed that all NN measures were inferior and recommended

using Si or ASi, I found in my broader comparison that
the NN measure NSi performed as well as Si did, if not

better. Across the 24 metapopulations used to evaluate

model performance, NSi and Si explained a similar
amount of deviance in patch occupancy and coloniza-

tion probabilities, their mean Z values were not

significantly different, and model NS had a higher

average AIC weight than model S (Fig. 1D). Although
these results appear to conflict with those reported by

Moilanen and Nieminen (2002), a closer look reveals

general consistency between studies. Two of the 24
metapopulations in my analysis were used by Moilanen

and Nieminen (2002) to evaluate models (metapopula-

tions 3 and 15; Table 2), and our results for these

metapopulations were similar. Although their literature
survey showed that studies using NN measures were less

likely to find a significant effect of connectivity than

studies using IFM and buffer measures, most of these

studies (24/35) used NHi rather than NSi. This result is
therefore consistent with my quantitative meta-analysis

showing a weaker effect of NHi in comparison to NSi
and Si.

The role of focal patch area

The IFM model AS and the NN-based multiple

regression model A 3 NS were by far the best
performing occupancy models (Fig. 1), but they were

not better than models S, NS, and BS at predicting

colonization (Fig. 2). The key feature that distinguished

models AS and A 3 NS from the others was the
inclusion of a term for focal patch area, Ai (Table 1).

While inclusion of Ai improved the prediction of

occupancy probabilities for nearly all metapopulations
(Appendix A), its inclusion improved the prediction of

colonization probabilities for less than half of the

metapopulations (Appendix B). Thus, focal patch area

appears to consistently improve occupancy models and
inconsistently improve colonization models. Other

studies not included in this meta-analysis have been

similarly divided, with some finding that larger patches

are more likely to be colonized (e.g., Saari et al. 1998,

Crone et al. 2001, Crooks et al. 2001, Ferraz et al. 2007)

and others finding no effect of focal patch area (e.g.,

Cronin 2004, Franken and Hik 2004). In general,

however, results of this study suggest that properties
of source patches surrounding an empty focal patch are

more important than the size of the focal patch in

determining its likelihood of being colonized.

While focal patch area Ai affected the performance of
occupancy and colonization models differently, the way

in which Ai was included in the models did not have a

strong impact on performance. The Ai measure was

included in the models in two distinct ways: either
directly in the calculation of the connectivity metric

(ASi ), as in Moilanen and Nieminen (2002), or as a

separate factor in a multiple regression model (A3NS).
Both types of models performed similarly, but ASi

requires seven parameters for its calculation vs. three

parameters for model A 3 NS (Table 1). Moreover, the

validity of ASi as a metric is questionable. Because ASi

includes two terms for patch area (focal patch area Ai

and surrounding patch Aj; Table 1), its units are area2,

which is difficult to interpret biologically. I feel the use

of a multiple regression model such as A3NS is a better
way to examine the influence of focal patch area, from

both biological and statistical standpoints. Biologically,

the predictors in the multiple regression model have
units that make sense. Statistically, the independent and

interactive effects of the predictors can be examined.

This is advantageous because focal patch area is

arguably a patch covariate that is distinct from
connectivity, and some may argue that it should not

be included in connectivity calculations. Additionally,

the multiple regression model is penalized for the added

parameter when using model comparison techniques
such as AIC, whereas the additional parameters that go

into calculating the IFM measures are basically hidden.

Potential drawbacks of IFM measures

The primary advantage of IFM measures is also a

potential drawback: they contain more information

about the patch network and dispersal abilities of
species than NN measures, but this detail requires more

parameterization. Parameter estimates for a, b, and c

should ideally be based on mark–recapture data (Hanski

et al. 2000, Wahlberg et al. 2002b). These data are

TABLE 3. Results of mixed-model ANOVAs comparing the ability of seven models to predict species’ occupancy and colonization
probabilities (see Table 1 for model descriptions).

Comparison method

Occupancy Colonization

F df P F df P

Explained deviance (pseudo-R2) 23.9 6, 139 ,0.0001 4.7 6, 89 ,0.0001
AIC weight (wi ) 14.2 4, 92 ,0.0001 2.4 6, 89 0.03
Wald test (Z value) 13.9 5, 115 ,0.0001 6.9 5, 78 ,0.0001

Notes: Three techniques were used to evaluate model performance: (1) pseudo-R2 values (the amount of deviance in occupancy
or colonization explained), (2) Akaike Information Criterion (AIC) weights, and (3) Wald tests (Z values, regression
coefficient/SE). For occupancy, results are shown for the AIC comparison that excluded the two models with terms for focal
patch area (AS and A 3 NS). Data from some metapopulations were reported in the same studies, so ‘‘study’’ was included as a
random effect and ‘‘connectivity model’’ was included as a fixed effect in the ANOVAs.
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usually unavailable, and conservation ecologists often

lack the resources to conduct such detailed species-

specific studies. Thus, many researchers ignore these

parameters when calculating Si (e.g., Steffan-Dewenter

and Tscharntke 2000, Cronin 2004). Fortunately, I

found that Si performance was relatively insensitive to

changes in b, and c has also been shown to have little

effect on Si (Moilanen and Nieminen 2002). Thus, if

information is not available for these scaling parameters,

the performance of Si should not be strongly affected.

In contrast, a is an important component of the

negative exponential dispersal kernel and should not be

ignored. Performance of Si was strongly affected by a,
and I found that both estimated and default a values led

to Si values with low predictive ability. Moreover,

inaccurate estimates of a could easily lead to the false

conclusion that increased connectivity decreases the

likelihood of occupancy (see Fig. 2). Moilanen and

Nieminen (2002) also found nonlinear changes in Z

values as they varied a from 0 to 5. Consistent with my

FIG. 3. Effect of parameters a and b on the S model Wald statistic for (A, B) the Scolitantides orion metapopulation, (C, D) the
Melitaea diamina metapopulation, and (E, F) the Euphydras aurinia metapopulation. The Wald statistic, or Z value, is the
coefficient from the logistic regression analysis divided by its standard error. Areas shaded in gray indicate the range of Z values
that are nonsignificant. Vertical dotted lines in panels A, C, and E show the published value of a, and vertical dotted lines in panels
B, D, and F show the published value of b.
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findings, they report that the maximum Z value was

obtained when a was far greater than the estimated

value for Scolitantides orion. Likewise, Hokit et al.

(2001) found that the performance of Si was sensitive to

changes in a for the lizard Sceloporus woodi (metapop-

ulation 6; Table 2). These findings suggest that the

migration distances used to calculate a may often be

inaccurate. According to Wahlberg et al. (2002b), these

distances should be mean daily movement rates (but see

alternative definitions of a in the following paragraph).

However, daily movement rates are rarely available and

annual movements are often used to calculate a. Because
a is the inverse of the migration distance, overestimation

of migratory ability due to use of annual movement data

could explain the general tendency for a to be far below

the optimal value. Estimation of a from the occupancy

data themselves may be the most practical way to

optimize IFM connectivity measures (Pellet et al. 2007).

Aside from the difficulties associated with estimating

a and Si sensitivity, there are two problems with the way

a has been implemented in the literature to date: (1)

many definitions have been published for a, and (2) the

units that are used for a are important but rarely

specified. Definitions of a include: a distance-dependent

survival rate (Hanski 1994a), migration rate (Moilanen

and Nieminen 2002, Wahlberg et al. 2002b), or

colonization rate (Wahlberg et al. 2002a); a parameter

that ‘‘determines the effect of distance on isolation’’

(Hanski et al. 2000); and ‘‘a species-specific parameter

(or several parameters) describing the dispersal ability of

the species’’ (Moilanen and Hanski 2001). The two

published equations for a are incompatible:

a ¼ 1=average distance moved ð1Þ

a ¼ 30:94 3 e�0:004 3 average distance ð2Þ

(Wahlberg et al. 2002b). Not surprisingly, this confusing

variety of definitions and equations has led to almost no

consistency among studies in the way a (and hence Si ) is

calculated (e.g., Valimaki and Itamies 2003, Franken

and Hik 2004, Maes and Bonte 2006).

Perhaps because of the confusion surrounding a and

scarcity of data required to calculate it, a is often left out

of Si calculations altogether, which gives it a value of 1

(e.g., Reunanen et al. 2002, Krauss et al. 2003,

Biedermann 2005). This practice is problematic, not

only because a default value of 1 can lead to poor Si

performance, but also because a is not a unitless scaling

parameter (Winfree et al. 2005). The units of a should be

distance�1 to cancel out dij, leaving Si in units of area.

An a value of 1 in a study with distance measured in

kilometers is 1000 times different than an a of 1 in a

study with distance measured in meters. Thus, the fact

that units of a (and often dij) are rarely specified can lead

to poor model construction that is easy to overlook

without close scrutiny. These problems are not inherent

to the parameter, and they could be avoided in the

future if a single definition (and equation) for a is agreed

upon and authors ensure that units are always specified.

What is the best measure of patch connectivity

for applied conservation?

The best measure of patch connectivity depends

largely on the level of spatial detail needed to address

the conservation problem. Measures of IFM are useful

for detailed modeling of metapopulation dynamics,

whereas buffer and NN measures are not. If the

contribution of specific habitat patches to metapopula-

tion viability needs to be determined, for example, an

IFM measure may be necessary (Wahlberg et al. 1996).

For applied conservation problems that are not spatially

explicit, BSi or NSi may be preferable measures of patch

PLATE 1. A metapopulation of the Marsh fritillary butterfly Euphydryas aurinia (shown here) that occurred in patchy meadows
in Finland was included in this study. Photo credit: Niklas Wahlberg.
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connectivity. Although these buffer and NN measures

lack the biological detail of IFM measures, simplicity
does not appear to decrease their ability to predict

patterns of patch occupancy and colonization. Addi-
tionally, they are easier to compute, avoid the problems

associated with IFM measures, and provide results that
are easier to compare among species and studies. The

NN measure NSi is particularly attractive because it
requires no data beyond patch coordinates and occu-

pancy data, whereas buffer measures often use species
dispersal data (which are notoriously inaccurate) to

determine the buffer radius.

Models NS and A 3 NS can be used effectively to
address several applied conservation problems. For

example, the relative influence of focal patch area (Ai )
and isolation are often of interest to conservation

ecologists (Fahrig 1997, Fleishman et al. 2002, James
et al. 2003, Krauss et al. 2003), and the independent and

combined effects of these factors can be assessed
statistically using model A 3 NS. This framework

facilitates testing of significant interactions between
patch area and isolation, which could lead to important

ecological insights. For example, the theory of island
biogeography predicts that area effects should be

stronger on islands that are more isolated and that
isolation effects should be stronger on smaller islands

(MacArthur and Wilson 1967:24–32); this prediction
could be tested using A 3 NS. Another practical

application of NS and A 3 NS is the use of regression
coefficients to determine the minimum size and maxi-

mum isolation values that correspond to a given
probability of occupancy or colonization (Hinsley et

al. 1996, Biedermann 2003). At the very least, research-
ers would be wise to determine whether using an

incidence function model measure would improve their
study before abandoning robust, simple, and useful

nearest-neighbor measures.
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